Exemplo n.º 1
0
def merge_temporal(images, alignment):
    weight = hl.Func("merge_temporal_weights")
    total_weight = hl.Func("merge_temporal_total_weights")
    output = hl.Func("merge_temporal_output")

    ix, iy, tx, ty, n = hl.Var('ix'), hl.Var('iy'), hl.Var('tx'), hl.Var('ty'), hl.Var('n')
    rdom0 = hl.RDom([(0, 16), (0, 16)])

    rdom1 = hl.RDom([(1, images.dim(2).extent() - 1)])

    imgs_mirror = hl.BoundaryConditions.mirror_interior(images, [(0, images.width()), (0, images.height())])

    layer = box_down2(imgs_mirror, "merge_layer")

    offset = Point(alignment[tx, ty, n]).clamp(Point(MINIMUM_OFFSET, MINIMUM_OFFSET),
                                               Point(MAXIMUM_OFFSET, MAXIMUM_OFFSET))

    al_x = idx_layer(tx, rdom0.x) + offset.x / 2
    al_y = idx_layer(ty, rdom0.y) + offset.y / 2

    ref_val = layer[idx_layer(tx, rdom0.x), idx_layer(ty, rdom0.y), 0]
    alt_val = layer[al_x, al_y, n]

    factor = 8.0
    min_distance = 10
    max_distance = 300 # max L1 distance, otherwise the value is not used

    distance = hl.sum(hl.abs(hl.cast(hl.Int(32), ref_val) - hl.cast(hl.Int(32), alt_val))) / 256

    normal_distance = hl.max(1, hl.cast(hl.Int(32), distance) / factor - min_distance / factor)

    # Weight for the alternate frame
    weight[tx, ty, n] = hl.select(normal_distance > (max_distance - min_distance), 0.0,
                                  1.0 / normal_distance)

    total_weight[tx, ty] = hl.sum(weight[tx, ty, rdom1]) + 1

    offset = Point(alignment[tx, ty, rdom1])

    al_x = idx_im(tx, ix) + offset.x
    al_y = idx_im(ty, iy) + offset.y

    ref_val = imgs_mirror[idx_im(tx, ix), idx_im(ty, iy), 0]
    alt_val = imgs_mirror[al_x, al_y, rdom1]

    # Sum all values according to their weight, and divide by total weight to obtain average
    output[ix, iy, tx, ty] = hl.sum(weight[tx, ty, rdom1] * alt_val / total_weight[tx, ty]) + ref_val / total_weight[
        tx, ty]

    weight.compute_root().parallel(ty).vectorize(tx, 16)

    total_weight.compute_root().parallel(ty).vectorize(tx, 16)

    output.compute_root().parallel(ty).vectorize(ix, 32)

    return output
Exemplo n.º 2
0
def test_minmax():
    x = hl.Var()
    f = hl.Func()
    f[x] = hl.select(x == 0, hl.min(x, 1), (x == 2) | (x == 4),
                     i32(hl.min(f32(x), 3.2, x * 2.1)), x == 3,
                     hl.max(x, x * 3, 1, x * 4), x)
    b = f.realize(5)
    assert b[0] == 0
    assert b[1] == 1, b[1]
    assert b[2] == 2
    assert b[3] == 12
    assert b[4] == 3
Exemplo n.º 3
0
def main():

    # So far Funcs (such as the one below) have evaluated to a single
    # scalar value for each point in their domain.
    single_valued = hl.Func()
    x, y = hl.Var("x"), hl.Var("y")
    single_valued[x, y] = x + y

    # One way to write a hl.Func that returns a collection of values is
    # to add an additional dimension which indexes that
    # collection. This is how we typically deal with color. For
    # example, the hl.Func below represents a collection of three values
    # for every x, y coordinate indexed by c.
    color_image = hl.Func()
    c = hl.Var("c")
    color_image[x, y, c] = hl.select(
        c == 0,
        245,  # Red value
        c == 1,
        42,  # Green value
        132)  # Blue value

    # Since this pattern appears quite often, Halide provides a
    # syntatic sugar to write the code above as the following,
    # using the "mux" function.
    # color_image[x, y, c] = hl.mux(c, [245, 42, 132]);

    # This method is often convenient because it makes it easy to
    # operate on this hl.Func in a way that treats each item in the
    # collection equally:
    brighter = hl.Func()
    brighter[x, y, c] = color_image[x, y, c] + 10

    # However this method is also inconvenient for three reasons.
    #
    # 1) Funcs are defined over an infinite domain, so users of this
    # hl.Func can for example access color_image(x, y, -17), which is
    # not a meaningful value and is probably indicative of a bug.
    #
    # 2) It requires a hl.select, which can impact performance if not
    # bounded and unrolled:
    # brighter.bound(c, 0, 3).unroll(c)
    #
    # 3) With this method, all values in the collection must have the
    # same type. While the above two issues are merely inconvenient,
    # this one is a hard limitation that makes it impossible to
    # express certain things in this way.

    # It is also possible to represent a collection of values as a
    # collection of Funcs:
    func_array = [hl.Func() for i in range(3)]
    func_array[0][x, y] = x + y
    func_array[1][x, y] = hl.sin(x)
    func_array[2][x, y] = hl.cos(y)

    # This method avoids the three problems above, but introduces a
    # new annoyance. Because these are separate Funcs, it is
    # difficult to schedule them so that they are all computed
    # together inside a single loop over x, y.

    # A third alternative is to define a hl.Func as evaluating to a
    # Tuple instead of an hl.Expr. A Tuple is a fixed-size collection of
    # Exprs which may have different type. The following function
    # evaluates to an integer value (x+y), and a floating point value
    # (hl.sin(x*y)).
    multi_valued = hl.Func("multi_valued")
    multi_valued[x, y] = (x + y, hl.sin(x * y))

    # Realizing a tuple-valued hl.Func returns a collection of
    # Buffers. We call this a Realization. It's equivalent to a
    # std::vector of hl.Buffer/Image objects:
    if True:
        im1, im2 = multi_valued.realize([80, 60])
        assert im1.type() == hl.Int(32)
        assert im2.type() == hl.Float(32)
        assert im1[30, 40] == 30 + 40
        assert np.isclose(im2[30, 40], math.sin(30 * 40))

    # You can also pass a tuple of pre-allocated buffers to realize()
    # rather than having new ones created. (The Buffers must have the correct
    # types and have identical sizes.)
    if True:
        im1, im2 = hl.Buffer(hl.Int(32),
                             [80, 60]), hl.Buffer(hl.Float(32), [80, 60])
        multi_valued.realize((im1, im2))
        assert im1[30, 40] == 30 + 40
        assert np.isclose(im2[30, 40], math.sin(30 * 40))

    # All Tuple elements are evaluated together over the same domain
    # in the same loop nest, but stored in distinct allocations. The
    # equivalent C++ code to the above is:
    if True:
        multi_valued_0 = np.empty((80 * 60), dtype=np.int32)
        multi_valued_1 = np.empty((80 * 60), dtype=np.int32)

        for yy in range(80):
            for xx in range(60):
                multi_valued_0[xx + 60 * yy] = xx + yy
                multi_valued_1[xx + 60 * yy] = math.sin(xx * yy)

    # When compiling ahead-of-time, a Tuple-valued hl.Func evaluates
    # into multiple distinct output halide_buffer_t structs. These appear in
    # order at the end of the function signature:
    # int multi_valued(...input buffers and params..., halide_buffer_t
    # *output_1, halide_buffer_t *output_2)

    # You can construct a Tuple by passing multiple Exprs to the
    # Tuple constructor as we did above. Perhaps more elegantly, you
    # can also take advantage of initializer lists and just
    # enclose your Exprs in braces:
    multi_valued_2 = hl.Func("multi_valued_2")
    multi_valued_2[x, y] = (x + y, hl.sin(x * y))

    # Calls to a multi-valued hl.Func cannot be treated as Exprs. The
    # following is a syntax error:
    # hl.Func consumer
    # consumer[x, y] = multi_valued_2[x, y] + 10

    # Instead you must index the returned object with square brackets
    # to retrieve the individual Exprs:
    integer_part = multi_valued_2[x, y][0]
    floating_part = multi_valued_2[x, y][1]
    assert type(integer_part) is hl.FuncTupleElementRef
    assert type(floating_part) is hl.FuncTupleElementRef

    consumer = hl.Func()
    consumer[x, y] = (integer_part + 10, floating_part + 10.0)

    # Tuple reductions.
    if True:
        # Tuples are particularly useful in reductions, as they allow
        # the reduction to maintain complex state as it walks along
        # its domain. The simplest example is an argmax.

        # First we create an Image to take the argmax over.
        input_func = hl.Func()
        input_func[x] = hl.sin(x)
        input = input_func.realize([100])
        assert input.type() == hl.Float(32)

        # Then we defined a 2-valued Tuple which tracks the maximum value
        # its index.
        arg_max = hl.Func()

        # Pure definition.
        # (using [()] for zero-dimensional Funcs is a convention of this python interface)
        arg_max[()] = (0, input[0])

        # Update definition.
        r = hl.RDom([(1, 99)])
        old_index = arg_max[()][0]
        old_max = arg_max[()][1]
        new_index = hl.select(old_max > input[r], r, old_index)
        new_max = hl.max(input[r], old_max)
        arg_max[()] = (new_index, new_max)

        # The equivalent C++ is:
        arg_max_0 = 0
        arg_max_1 = float(input[0])
        for r in range(1, 100):
            old_index = arg_max_0
            old_max = arg_max_1
            new_index = r if (old_max > input[r]) else old_index
            new_max = max(input[r], old_max)
            # In a tuple update definition, all loads and computation
            # are done before any stores, so that all Tuple elements
            # are updated atomically with respect to recursive calls
            # to the same hl.Func.
            arg_max_0 = new_index
            arg_max_1 = new_max

        # Let's verify that the Halide and C++ found the same maximum
        # value and index.
        if True:
            r0, r1 = arg_max.realize()

            assert r0.type() == hl.Int(32)
            assert r1.type() == hl.Float(32)
            assert arg_max_0 == r0[()]
            assert np.isclose(arg_max_1, r1[()])

        # Halide provides argmax and hl.argmin as built-in reductions
        # similar to sum, product, maximum, and minimum. They return
        # a Tuple consisting of the point in the reduction domain
        # corresponding to that value, and the value itself. In the
        # case of ties they return the first value found. We'll use
        # one of these in the following section.

    # Tuples for user-defined types.
    if True:
        # Tuples can also be a convenient way to represent compound
        # objects such as complex numbers. Defining an object that
        # can be converted to and from a Tuple is one way to extend
        # Halide's type system with user-defined types.
        class Complex:
            def __init__(self, r, i=None):
                if type(r) is float and type(i) is float:
                    self.real = hl.Expr(r)
                    self.imag = hl.Expr(i)
                elif i is not None:
                    self.real = r
                    self.imag = i
                else:
                    self.real = r[0]
                    self.imag = r[1]

            def as_tuple(self):
                "Convert to a Tuple"
                return (self.real, self.imag)

            def __add__(self, other):
                "Complex addition"
                return Complex(self.real + other.real, self.imag + other.imag)

            def __mul__(self, other):
                "Complex multiplication"
                return Complex(self.real * other.real - self.imag * other.imag,
                               self.real * other.imag + self.imag * other.real)

            def __getitem__(self, idx):
                return (self.real, self.imag)[idx]

            def __len__(self):
                return 2

            def magnitude(self):
                "Complex magnitude"
                return (self.real * self.real) + (self.imag * self.imag)

            # Other complex operators would go here. The above are
            # sufficient for this example.

        # Let's use the Complex struct to compute a Mandelbrot set.
        mandelbrot = hl.Func()

        # The initial complex value corresponding to an x, y coordinate
        # in our hl.Func.
        initial = Complex(x / 15.0 - 2.5, y / 6.0 - 2.0)

        # Pure definition.
        t = hl.Var("t")
        mandelbrot[x, y, t] = Complex(0.0, 0.0)

        # We'll use an update definition to take 12 steps.
        r = hl.RDom([(1, 12)])
        current = Complex(mandelbrot[x, y, r - 1])

        # The following line uses the complex multiplication and
        # addition we defined above.
        mandelbrot[x, y, r] = (Complex(current * current) + initial)

        # We'll use another tuple reduction to compute the iteration
        # number where the value first escapes a circle of radius 4.
        # This can be expressed as an hl.argmin of a boolean - we want
        # the index of the first time the given boolean expression is
        # false (we consider false to be less than true).  The argmax
        # would return the index of the first time the expression is
        # true.

        escape_condition = Complex(mandelbrot[x, y, r]).magnitude() < 16.0
        first_escape = hl.argmin(escape_condition)
        assert type(first_escape) is tuple
        # We only want the index, not the value, but hl.argmin returns
        # both, so we'll index the hl.argmin Tuple expression using
        # square brackets to get the hl.Expr representing the index.
        escape = hl.Func()
        escape[x, y] = first_escape[0]

        # Realize the pipeline and print the result as ascii art.
        result = escape.realize([61, 25])
        assert result.type() == hl.Int(32)
        code = " .:-~*={&%#@"
        for yy in range(result.height()):
            for xx in range(result.width()):
                index = result[xx, yy]
                if index < len(code):
                    print("%c" % code[index], end="")
                else:
                    pass  # is lesson 13 cpp version buggy ?
            print("")

    print("Success!")

    return 0
Exemplo n.º 4
0
def tone_map(input, width, height, compression, gain):
    print(f'Compression: {compression}, gain: {gain}')

    normal_dist = hl.Func("luma_weight_distribution")
    grayscale = hl.Func("grayscale")
    output = hl.Func("tone_map_output")

    x, y, c, v = hl.Var("x"), hl.Var("y"), hl.Var("c"), hl.Var("v")

    rdom = hl.RDom([(0, 3)])

    normal_dist[v] = hl.f32(hl.exp(-12.5 * hl.pow(hl.f32(v) / 65535 - 0.5, 2)))

    grayscale[x, y] = hl.u16(hl.sum(hl.u32(input[x, y, rdom])) / 3)

    dark = grayscale

    comp_const = 1
    gain_const = 1

    comp_slope = (compression - comp_const) / (TONE_MAP_PASSES)
    gain_slope = (gain - gain_const) / (TONE_MAP_PASSES)

    for i in range(TONE_MAP_PASSES):
        print('    pass', i)

        norm_comp = i * comp_slope + comp_const
        norm_gain = i * gain_slope + gain_const

        bright = brighten(dark, norm_comp)

        dark_gamma = gamma_correct(dark)
        bright_gamma = gamma_correct(bright)

        dark_gamma = combine2(dark_gamma, bright_gamma, width, height, normal_dist)

        dark = brighten(gamma_inverse(dark_gamma), norm_gain)

    output[x, y, c] = hl.u16_sat(hl.u32(input[x, y, c]) * hl.u32(dark[x, y]) / hl.u32(hl.max(1, grayscale[x, y])))

    grayscale.compute_root().parallel(y).vectorize(x, 16)

    normal_dist.compute_root().vectorize(v, 16)

    return output
Exemplo n.º 5
0
def main():

    # So far Funcs (such as the one below) have evaluated to a single
    # scalar value for each point in their domain.
    single_valued = hl.Func()
    x, y = hl.Var("x"), hl.Var("y")
    single_valued[x, y] = x + y

    # One way to write a hl.Func that returns a collection of values is
    # to add an additional dimension which indexes that
    # collection. This is how we typically deal with color. For
    # example, the hl.Func below represents a collection of three values
    # for every x, y coordinate indexed by c.
    color_image = hl.Func()
    c = hl.Var("c")
    color_image[x, y, c] = hl.select(c == 0, 245, # Red value
                                  c == 1, 42,  # Green value
                                  132)        # Blue value

    # This method is often convenient because it makes it easy to
    # operate on this hl.Func in a way that treats each item in the
    # collection equally:
    brighter = hl.Func()
    brighter[x, y, c] = color_image[x, y, c] + 10

    # However this method is also inconvenient for three reasons.
    #
    # 1) Funcs are defined over an infinite domain, so users of this
    # hl.Func can for example access color_image(x, y, -17), which is
    # not a meaningful value and is probably indicative of a bug.
    #
    # 2) It requires a hl.select, which can impact performance if not
    # bounded and unrolled:
    # brighter.bound(c, 0, 3).unroll(c)
    #
    # 3) With this method, all values in the collection must have the
    # same type. While the above two issues are merely inconvenient,
    # this one is a hard limitation that makes it impossible to
    # express certain things in this way.

    # It is also possible to represent a collection of values as a
    # collection of Funcs:
    func_array = [hl.Func() for i in range(3)]
    func_array[0][x, y] = x + y
    func_array[1][x, y] = hl.sin(x)
    func_array[2][x, y] = hl.cos(y)

    # This method avoids the three problems above, but introduces a
    # new annoyance. Because these are separate Funcs, it is
    # difficult to schedule them so that they are all computed
    # together inside a single loop over x, y.

    # A third alternative is to define a hl.Func as evaluating to a
    # Tuple instead of an hl.Expr. A Tuple is a fixed-size collection of
    # Exprs which may have different type. The following function
    # evaluates to an integer value (x+y), and a floating point value
    # (hl.sin(x*y)).
    multi_valued = hl.Func("multi_valued")
    multi_valued[x, y] = (x + y, hl.sin(x * y))

    # Realizing a tuple-valued hl.Func returns a collection of
    # Buffers. We call this a Realization. It's equivalent to a
    # std::vector of hl.Buffer/Image objects:
    if True:
        (im1, im2) = multi_valued.realize(80, 60)
        assert type(im1) is hl.Buffer_int32
        assert type(im2) is hl.Buffer_float32
        assert im1(30, 40) == 30 + 40
        assert numpy.isclose(im2(30, 40), math.sin(30 * 40))


    # All Tuple elements are evaluated together over the same domain
    # in the same loop nest, but stored in distinct allocations. The
    # equivalent C++ code to the above is:
    if True:
        multi_valued_0 = numpy.empty((80*60), dtype=numpy.int32)
        multi_valued_1 = numpy.empty((80*60), dtype=numpy.int32)

        for yy in range(80):
            for xx in range(60):
                multi_valued_0[xx + 60*yy] = xx + yy
                multi_valued_1[xx + 60*yy] = math.sin(xx*yy)


    # When compiling ahead-of-time, a Tuple-valued hl.Func evaluates
    # into multiple distinct output buffer_t structs. These appear in
    # order at the end of the function signature:
    # int multi_valued(...input buffers and params..., buffer_t *output_1, buffer_t *output_2)

    # You can construct a Tuple by passing multiple Exprs to the
    # Tuple constructor as we did above. Perhaps more elegantly, you
    # can also take advantage of C++11 initializer lists and just
    # enclose your Exprs in braces:
    multi_valued_2 = hl.Func("multi_valued_2")
    multi_valued_2[x, y] = (x + y, hl.sin(x * y))

    # Calls to a multi-valued hl.Func cannot be treated as Exprs. The
    # following is a syntax error:
    # hl.Func consumer
    # consumer[x, y] = multi_valued_2[x, y] + 10

    # Instead you must index the returned object with square brackets
    # to retrieve the individual Exprs:
    integer_part = multi_valued_2[x, y][0]
    floating_part = multi_valued_2[x, y][1]
    assert type(integer_part) is hl.FuncTupleElementRef
    assert type(floating_part) is hl.FuncTupleElementRef

    consumer = hl.Func()
    consumer[x, y] = (integer_part + 10, floating_part + 10.0)

    # Tuple reductions.
    if True:
        # Tuples are particularly useful in reductions, as they allow
        # the reduction to maintain complex state as it walks along
        # its domain. The simplest example is an argmax.

        # First we create an Image to take the argmax over.
        input_func = hl.Func()
        input_func[x] = hl.sin(x)
        input = input_func.realize(100)
        assert type(input) is hl.Buffer_float32

        # Then we defined a 2-valued Tuple which tracks the maximum value
        # its index.
        arg_max = hl.Func()

        # Pure definition.
        # (using [()] for zero-dimensional Funcs is a convention of this python interface)
        arg_max[()] = (0, input(0))

        # Update definition.
        r = hl.RDom(1, 99)
        old_index = arg_max[()][0]
        old_max   = arg_max[()][1]
        new_index = hl.select(old_max > input[r], r, old_index)
        new_max   = hl.max(input[r], old_max)
        arg_max[()] = (new_index, new_max)

        # The equivalent C++ is:
        arg_max_0 = 0
        arg_max_1 = float(input(0))
        for r in range(1, 100):
            old_index = arg_max_0
            old_max = arg_max_1
            new_index = r if (old_max > input(r)) else old_index
            new_max = max(input(r), old_max)
            # In a tuple update definition, all loads and computation
            # are done before any stores, so that all Tuple elements
            # are updated atomically with respect to recursive calls
            # to the same hl.Func.
            arg_max_0 = new_index
            arg_max_1 = new_max


        # Let's verify that the Halide and C++ found the same maximum
        # value and index.
        if True:
            (r0, r1) = arg_max.realize()

            assert type(r0) is hl.Buffer_int32
            assert type(r1) is hl.Buffer_float32
            assert arg_max_0 == r0(0)
            assert numpy.isclose(arg_max_1, r1(0))


        # Halide provides argmax and hl.argmin as built-in reductions
        # similar to sum, product, maximum, and minimum. They return
        # a Tuple consisting of the point in the reduction domain
        # corresponding to that value, and the value itself. In the
        # case of ties they return the first value found. We'll use
        # one of these in the following section.


    # Tuples for user-defined types.
    if True:
        # Tuples can also be a convenient way to represent compound
        # objects such as complex numbers. Defining an object that
        # can be converted to and from a Tuple is one way to extend
        # Halide's type system with user-defined types.
        class Complex:

            def __init__(self, r, i=None):
                if type(r) is float and type(i) is float:
                    self.real = hl.Expr(r)
                    self.imag = hl.Expr(i)
                elif i is not None:
                    self.real = r
                    self.imag = i
                else:
                    self.real = r[0]
                    self.imag = r[1]

            def as_tuple(self):
                "Convert to a Tuple"
                return (self.real, self.imag)


            def __add__(self, other):
                "Complex addition"
                return Complex(self.real + other.real, self.imag + other.imag)


            def __mul__(self, other):
                "Complex multiplication"
                return Complex(self.real * other.real - self.imag * other.imag,
                               self.real * other.imag + self.imag * other.real)

            def __getitem__(self, idx):
                return (self.real, self.imag)[idx]

            def __len__(self):
                return 2

            def magnitude(self):
                "Complex magnitude"
                return (self.real * self.real) + (self.imag * self.imag)


            # Other complex operators would go here. The above are
            # sufficient for this example.


        # Let's use the Complex struct to compute a Mandelbrot set.
        mandelbrot = hl.Func()

        # The initial complex value corresponding to an x, y coordinate
        # in our hl.Func.
        initial = Complex(x/15.0 - 2.5, y/6.0 - 2.0)

        # Pure definition.
        t = hl.Var("t")
        mandelbrot[x, y, t] = Complex(0.0, 0.0)

        # We'll use an update definition to take 12 steps.
        r = hl.RDom(1, 12)
        current = Complex(mandelbrot[x, y, r-1])

        # The following line uses the complex multiplication and
        # addition we defined above.
        mandelbrot[x, y, r] = (Complex(current*current) + initial)

        # We'll use another tuple reduction to compute the iteration
        # number where the value first escapes a circle of radius 4.
        # This can be expressed as an hl.argmin of a boolean - we want
        # the index of the first time the given boolean expression is
        # false (we consider false to be less than true).  The argmax
        # would return the index of the first time the expression is
        # true.

        escape_condition = Complex(mandelbrot[x, y, r]).magnitude() < 16.0
        first_escape = hl.argmin(escape_condition)
        assert type(first_escape) is tuple
        # We only want the index, not the value, but hl.argmin returns
        # both, so we'll index the hl.argmin Tuple expression using
        # square brackets to get the hl.Expr representing the index.
        escape = hl.Func()
        escape[x, y] = first_escape[0]

        # Realize the pipeline and print the result as ascii art.
        result = escape.realize(61, 25)
        assert type(result) is hl.Buffer_int32
        code = " .:-~*={&%#@"
        for yy in range(result.height()):
            for xx in range(result.width()):
                index = result(xx, yy)
                if index < len(code):
                    print("%c" % code[index], end="")
                else:
                    pass # is lesson 13 cpp version buggy ?
            print("")


    print("Success!")

    return 0
def energy_maxes(x, y, c, start_energy, next_energy):
    combined = mkfunc("energy_max", start_energy, next_energy)
    combined[x,y] = hl.max(start_energy[x,y], next_energy[x,y])
    return combined