Exemplo n.º 1
0
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
    if args.local_rank not in [-1, 0] and not evaluate:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    processor = processors[task]()
    output_mode = output_modes[task]
    # Load data features from cache or dataset file
    cached_features_file = os.path.join(
        args.data_dir,
        "cached_{}_{}_{}_{}".format(
            "dev" if evaluate else "train",
            list(filter(None, args.model_name_or_path.split("/"))).pop(),
            str(args.max_seq_length),
            str(task),
        ),
    )

    label_list = processor.get_labels()

    if os.path.exists(cached_features_file) and not args.overwrite_cache:
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
        logger.info("Creating features from dataset file at %s", args.data_dir)
        if task in ["mnli", "mnli-mm"] and args.model_type in ["roberta"]:
            # HACK(label indices are swapped in RoBERTa pretrained model)
            label_list[1], label_list[2] = label_list[2], label_list[1]
        examples = (
            processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
        )
        features = convert_examples_to_features(
            examples,
            tokenizer,
            label_list=label_list,
            max_length=args.max_seq_length,
            output_mode=output_mode,
            pad_on_left=bool(args.model_type in ["xlnet"]),  # pad on the left for xlnet
            pad_token=tokenizer.pad_token_id,
            pad_token_segment_id=tokenizer._convert_token_to_id('[PAD]'),
            #pad_token_segment_id=tokenizer.pad_token_type_id,
        )
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

    if args.local_rank == 0 and not evaluate:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
    all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
    if output_mode == "classification":
        all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
    elif output_mode == "regression":
        all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
    all_pair_ids = torch.tensor([int(f.pairID) for f in features], dtype=torch.long)

    dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels, all_pair_ids)
    return dataset, label_list
Exemplo n.º 2
0
def load_and_cache_examples(data_dir, max_seq_length, model_type, model_name_or_path, tokenizer, overwrite_cache):
    processor = HansProcessor()
    # Load data features from cache or dataset file
    cached_features_file = os.path.join(
        data_dir,
        "cached_{}_{}_{}_{}".format(
            "dev" if evaluate else "train",
            list(filter(None, model_name_or_path.split("/"))).pop(),
            str(max_seq_length),
            "hans",
        ),
    )

    label_list = processor.get_labels()

    if os.path.exists(cached_features_file) and not overwrite_cache:
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
        logger.info("Creating features from dataset file at %s", data_dir)
        if model_type in ["roberta"]:
            # HACK(label indices are swapped in RoBERTa pretrained model)
            label_list[1], label_list[2] = label_list[2], label_list[1]
        examples = (
            processor.get_dev_examples(data_dir)
        )
        features = convert_examples_to_features(
            examples,
            tokenizer,
            label_list=label_list,
            max_length=max_seq_length,
            output_mode="classification",
            pad_on_left=bool(model_type in ["xlnet"]),  # pad on the left for xlnet
            pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
            pad_token_segment_id=4 if model_type in ["xlnet"] else 0,
        )
        logger.info("Saving features into cached file %s", cached_features_file)
        torch.save(features, cached_features_file)

    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
    all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
    all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
    all_pair_ids = torch.tensor([int(f.pairID) for f in features], dtype=torch.long)

    dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels, all_pair_ids)
    return dataset, label_list