Exemplo n.º 1
0
                       cls_scores,
                       bbox_coder,
                       centerness,
                       nms_pre=1000,
                       iou_threshold=0.6,
                       score_threshold=0.05,
                       use_sigmoid=True)


local_eval_metrics = {
    'loss': MeanMetricWrapper(criterion),
    'mAP': MeanAveragePrecision(output_transform=output_transform),
}

learner = SuperLearner(model,
                       criterion,
                       optimizer,
                       train_metrics=train_metrics,
                       eval_metrics=eval_metrics,
                       work_dir=f"./models")

learner.fit(
    ds_train,
    epochs,
    ds_val,
    val_freq=1,
    steps_per_epoch=steps_per_epoch,
    val_steps=val_steps,
    local_eval_metrics=local_eval_metrics,
    local_eval_freq=[(0, 5), (45, 1)],
)
Exemplo n.º 2
0
base_lr = 0.025
epochs = 600
lr_schedule = CosineLR(base_lr * mul, steps_per_epoch, epochs=epochs, min_lr=0)
optimizer = SGD(lr_schedule, momentum=0.9, weight_decay=3e-4, nesterov=True)

train_metrics = {
    'loss': Mean(),
    'acc': CategoricalAccuracy(),
}
eval_metrics = {
    'loss': CategoricalCrossentropy(from_logits=True),
    'acc': CategoricalAccuracy(),
}

learner = SuperLearner(model,
                       criterion,
                       optimizer,
                       grad_clip_norm=5.0,
                       jit_compile=False,
                       train_metrics=train_metrics,
                       eval_metrics=eval_metrics,
                       work_dir="./CIFAR10-PC-DARTS")

learner.fit(ds_train,
            epochs,
            ds_test,
            val_freq=1,
            steps_per_epoch=steps_per_epoch,
            val_steps=test_steps,
            callbacks=[DropPathRateScheduleV2()])
Exemplo n.º 3
0
def objective(trial: optuna.Trial):

    base_lr = trial.suggest_float("base_lr", 0.001, 0.05, step=0.001)
    weight_decay = trial.suggest_loguniform("weight_decay", 1e-5, 1e-3)
    ema = trial.suggest_categorical("ema", ["true", "false"])
    ema_decay = trial.suggest_loguniform("ema_decay", 0.99,
                                         0.9999) if ema == 'true' else None

    @curry
    def transform(image, label, training):
        image = pad(image, 2)
        image, label = to_tensor(image, label)
        image = normalize(image, [0.1307], [0.3081])

        label = tf.one_hot(label, 10)

        return image, label

    batch_size = 128
    eval_batch_size = 256
    ds_train, ds_test, steps_per_epoch, test_steps = make_mnist_dataset(
        batch_size, eval_batch_size, transform, sub_ratio=0.01)

    model = LeNet5()
    model.build((None, 32, 32, 1))

    criterion = CrossEntropy()

    epochs = 20

    lr_shcedule = CosineLR(base_lr, steps_per_epoch, epochs=epochs, min_lr=0)
    optimizer = SGD(lr_shcedule,
                    momentum=0.9,
                    nesterov=True,
                    weight_decay=weight_decay)

    train_metrics = {
        'loss': Mean(),
        'acc': CategoricalAccuracy(),
    }
    eval_metrics = {
        'loss': CategoricalCrossentropy(from_logits=True),
        'acc': CategoricalAccuracy(),
    }

    learner = SuperLearner(model,
                           criterion,
                           optimizer,
                           train_metrics=train_metrics,
                           eval_metrics=eval_metrics,
                           work_dir=f"./MNIST",
                           multiple_steps=True)

    callbacks = [OptunaReportIntermediateResult('acc', trial)]
    # if ema == 'true':
    #     callbacks.append(EMA(ema_decay))

    learner.fit(ds_train,
                epochs,
                ds_test,
                val_freq=2,
                steps_per_epoch=steps_per_epoch,
                val_steps=test_steps,
                callbacks=callbacks)

    return learner.metric_history.get_metric('acc', "eval")[-1]
Exemplo n.º 4
0
                momentum=0.9,
                weight_decay=params['weight_decay'],
                nesterov=True)
train_metrics = {
    'loss': Mean(),
    'acc': CategoricalAccuracy(),
}
eval_metrics = {
    'loss': CategoricalCrossentropy(from_logits=True),
    'acc': CategoricalAccuracy(),
}

learner = SuperLearner(model,
                       criterion,
                       optimizer,
                       train_metrics=train_metrics,
                       eval_metrics=eval_metrics,
                       work_dir=f"./CIFAR100-NNI",
                       multiple_steps=True)

callbacks = [NNIReportIntermediateResult('acc')]
if params['ema']['_name'] == 'true':
    callbacks.append(EMA(params['ema']['decay']))

hist = learner.fit(ds_train,
                   epochs,
                   ds_test,
                   val_freq=1,
                   steps_per_epoch=steps_per_epoch,
                   val_steps=test_steps,
                   callbacks=callbacks)
Exemplo n.º 5
0
    }
})

backbone = resnet50(output_stride=16, multi_grad=(1, 2, 4))
model = DeepLabV3P(backbone, aspp_ratios=(1, 6, 12, 18), aspp_channels=256, num_classes=19)
model.build((None, HEIGHT, WIDTH, 3))

criterion = cross_entropy(ignore_label=255)
base_lr = 1e-3
epochs = 400
lr_schedule = CosineLR(base_lr * mul, steps_per_epoch, epochs, min_lr=0,
                       warmup_min_lr=0, warmup_epoch=5)
optimizer = SGD(lr_schedule, momentum=0.9, nesterov=True, weight_decay=4e-5)

train_metrics = {
    'loss': Mean(),
}
eval_metrics = {
    'loss': CrossEntropy(ignore_label=255),
    'miou': MeanIoU(num_classes=19),
}

learner = SuperLearner(
    model, criterion, optimizer,
    train_metrics=train_metrics, eval_metrics=eval_metrics,
    work_dir=f"./models")

learner.fit(
    ds_train_dist, epochs, ds_val_dist, val_freq=1,
    steps_per_epoch=steps_per_epoch, val_steps=val_steps)
Exemplo n.º 6
0
model.summary()

criterion = CrossEntropy()

base_lr = 0.1
epochs = 300
lr_schedule = CosineLR(base_lr, steps_per_epoch, epochs=epochs, min_lr=0)
optimizer = SGD(lr_schedule, momentum=0.9, weight_decay=5e-4, nesterov=True)
train_metrics = {
    'loss': Mean(),
    'acc': CategoricalAccuracy(),
}
eval_metrics = {
    'loss': CategoricalCrossentropy(from_logits=True),
    'acc': CategoricalAccuracy(),
}

learner = SuperLearner(model,
                       criterion,
                       optimizer,
                       train_metrics=train_metrics,
                       eval_metrics=eval_metrics,
                       work_dir="./drive/MyDrive/models/CIFAR100")

hist = learner.fit(ds_train,
                   epochs,
                   ds_test,
                   val_freq=1,
                   steps_per_epoch=steps_per_epoch,
                   val_steps=test_steps,
                   callbacks=[EMA(decay=0.99975)])
Exemplo n.º 7
0
def objective(trial: optuna.Trial):

    cutout_prob = trial.suggest_float("cutout_prob", 0, 1.0, step=0.1)
    mixup_alpha = trial.suggest_float("mixup_alpha", 0, 0.5, step=0.1)
    label_smoothing = trial.suggest_uniform("label_smoothing", 0, 0.2)
    base_lr = trial.suggest_float("base_lr", 0.01, 0.2, step=0.01)
    weight_decay = trial.suggest_loguniform("weight_decay", 1e-5, 1e-3)
    ema = trial.suggest_categorical("ema", ["true", "false"])
    ema_decay = trial.suggest_loguniform("ema_decay", 0.995,
                                         0.9999) if ema == 'true' else None

    @curry
    def transform(image, label, training):

        if training:
            image = random_crop(image, (32, 32), (4, 4))
            image = tf.image.random_flip_left_right(image)
            image = autoaugment(image, "CIFAR10")

        image, label = to_tensor(image, label)
        image = normalize(image, [0.491, 0.482, 0.447], [0.247, 0.243, 0.262])

        if training:
            image = random_apply(cutout(length=16), cutout_prob, image)

        label = tf.one_hot(label, 100)

        return image, label

    def zip_transform(data1, data2):
        return mixup(data1, data2, alpha=mixup_alpha)

    batch_size = 128
    eval_batch_size = 2048

    ds_train, ds_test, steps_per_epoch, test_steps = make_cifar100_dataset(
        batch_size, eval_batch_size, transform, zip_transform)

    setup_runtime(fp16=True)
    ds_train, ds_test = distribute_datasets(ds_train, ds_test)

    model = ResNet(depth=16, k=8, num_classes=100)
    model.build((None, 32, 32, 3))
    model.summary()

    criterion = CrossEntropy(label_smoothing=label_smoothing)

    epochs = 50
    lr_schedule = CosineLR(base_lr, steps_per_epoch, epochs=epochs, min_lr=0)
    optimizer = SGD(lr_schedule,
                    momentum=0.9,
                    weight_decay=weight_decay,
                    nesterov=True)
    train_metrics = {
        'loss': Mean(),
        'acc': CategoricalAccuracy(),
    }
    eval_metrics = {
        'loss': CategoricalCrossentropy(from_logits=True),
        'acc': CategoricalAccuracy(),
    }

    learner = SuperLearner(model,
                           criterion,
                           optimizer,
                           train_metrics=train_metrics,
                           eval_metrics=eval_metrics,
                           work_dir=f"./CIFAR100-NNI",
                           multiple_steps=True)

    callbacks = [OptunaReportIntermediateResult('acc', trial)]
    if ema == 'true':
        callbacks.append(EMA(ema_decay))

    learner.fit(ds_train,
                epochs,
                ds_test,
                val_freq=1,
                steps_per_epoch=steps_per_epoch,
                val_steps=test_steps,
                callbacks=callbacks)

    return learner.metric_history.get_metric('acc', "eval")[-1]
Exemplo n.º 8
0
criterion = CrossEntropy()

epochs = 20

base_lr = 0.05
lr_shcedule = CosineLR(base_lr, steps_per_epoch, epochs=epochs, min_lr=0)
optimizer = SGD(lr_shcedule, momentum=0.9, nesterov=True, weight_decay=1e-4)

train_metrics = {
    'loss': Mean(),
    'acc': CategoricalAccuracy(),
}
eval_metrics = {
    'loss': CategoricalCrossentropy(from_logits=True),
    'acc': CategoricalAccuracy(),
}

learner = SuperLearner(model,
                       criterion,
                       optimizer,
                       train_metrics=train_metrics,
                       eval_metrics=eval_metrics,
                       work_dir=f"./MNIST")

learner.fit(ds_train,
            epochs,
            ds_test,
            val_freq=2,
            steps_per_epoch=steps_per_epoch,
            val_steps=test_steps)