def verify(self, msgAndDigest, associatedData=b''): """ Verifies whether the MAC digest from input ciphertext and digest matches the computed one over ciphertext and associated data. Parameters ---------- msgAndDigest : dict Dictionary composed of the MAC algorithm, the MACed message (or ciphertext), and the digest computed by MACing HMAC_algorithm + associatedData + msg. It is the format generated by the mac() function within this class. associatedData : str or byte str, optional Associated data that will be MACed together with the ciphertext and algorithm; the associated data will not be encrypted. Returns ------- bool True if the digests match, False otherwise. Raises ------ ValueError If the HMAC algorithm is not supported. """ if msgAndDigest['alg'] != self._algorithm: raise ValueError( "Currently only HMAC_SHA2 is supported as an algorithm") expected = bytes( self.mac(msgAndDigest['msg'], associatedData=associatedData)['digest'], 'utf-8') received = bytes(msgAndDigest['digest'], 'utf-8') # we compare the hash instead of the direct value to avoid a timing attack return sha2(expected).digest() == sha2(received).digest()
def read_user_id(self, u_id): if u_id is None or u_id == '': return '' algorithm = sha2() algorithm.update(u_id.encode()) return algorithm.hexdigest().upper()
def do_test_sha2_inserts(self, m, k, num_key): """ Test CountingBloom2 for specific parameters. """ keys = [] # set up distinct keys, each the hash of a unique value for i in range(num_key): sha = sha2() stuff = RNG.some_bytes(32) # 32 quasi-random bytes stuff[0] = i # guarantee uniqueness sha.update(stuff) keys.append(stuff) fltr = CountingBloom(m, k, key_bytes=32) # DEBUG # print("test_sha2_inserts: len of new filter is %d" % len(fltr)) # END for i in range(num_key): # DEBUG if i != len(fltr): print(" before %d-th insert length of filter is %d" % (i, len(fltr))) # END self.assertEqual(i, len(fltr)) keysel = KeySelector(keys[i], fltr) self.assertFalse(fltr.is_member(keysel), "key %d not yet in set, but found!" % i) fltr.insert(keysel) # add key to fltr for i in range(num_key): keysel = KeySelector(keys[i], fltr) self.assertTrue(fltr.is_member(keysel), "key %d has been added but not found in set" % i)
def test_register_device(): url = base_url + register_endpoint alg = sha2() alg.update(TEST_EMAIL.encode()) headers = {'User-Id': alg.hexdigest().upper(), 'Install-Id': TEST_INSTALL_ID} response = requests.post(url, data={'push_id': TEST_PUSH_ID}, headers=headers) return response.text
def test_upload_sensor_readings(): url = base_url + upload_sensor_readings_endpoint alg = sha2() alg.update(TEST_EMAIL.encode()) headers = {'User-Id': alg.hexdigest().upper()} sensor_readings = generate_sensor_readings(0) response = requests.post(url, json=sensor_readings, headers=headers) return response.text
def sha2_parse(filename): """Open file, compute sha2 hash and return as ascii hex string""" try: f = open(filename, 'rb') content = f.read() sha2hash = hashlib.sha2(content).hexdigest() return sha2hash except ValueError: return 'No hash' finally: f.close()
def test_get_medicine_data(): url = base_url + get_med_data_endpoint alg = sha2() alg.update(TEST_EMAIL.encode()) headers = {'User-Id': alg.hexdigest().upper(), 'Install-Id': TEST_INSTALL_ID} response = requests.get(url, headers=headers) response = response.json() MED_IDS.append(response['medicines'][0]['id']) MED_IDS.append(response['medicines'][0]['id']) MED_IDS.append(response['medicines'][1]['id']) MED_IDS.append(response['medicines'][1]['id']) MED_IDS.append(response['medicines'][1]['id']) return response
def decrypt(self, cipherText, associatedData=''): """ Decrypts a ciphertext in AEAD mode (Authenticated Encryption with Associated Data) using the superclass symmetric encryption parameters. The MAC is computed with both the ciphertext and associated data (and other cryptosystem parameters), but the associated data is not encrypted, nor available within the ciphertext structure. Parameters ---------- ciphertext : str or byte str The message to be decrypted. associatedData : str or byte str, optional Associated data that will be MACed together with the ciphertext and algorithm. This associated text must be in plaintext. Returns ------- byte str The decrypted plaintext, if the ciphertext was successfuly authenticated. Raise exception otherwise. Raises ------ ValueError If the MAC is invalid. Notes ----- The IV is included in the computation of the MAC. In fact, all cipher parameters are included: the encryption function returns a JSON object from a dictionary composed of the cipher parameters (e.g., algorithm, mode, IV), and the ciphertext. The MAC function uses the whole JSON object/string to compute the MAC, prepended with the HMAC algorithm + associatedData. The MAC key is computed as sha2(b'Poor Mans Key Extractor" + key). """ # warning only valid in the random oracle mac_key = sha2(b'Poor Mans Key Extractor' + self._key).digest() mac = MessageAuthenticator(mac_key) if not mac.verify(cipherText, associatedData=associatedData): raise ValueError( "Invalid mac. Your data was tampered with or your key is wrong" ) else: return super(AuthenticatedCryptoAbstraction, self).decrypt(cipherText['msg'])
def encrypt(self, msg, associatedData=''): """ Encrypts a message in AEAD mode (Authenticated Encryption with Associated Data) using the superclass symmetric encryption parameters. The MAC is computed with both the ciphertext and associated data (and other cryptosystem parameters), but the associated data is not encrypted, nor saved within the ciphertext structure. Parameters ---------- msg : str or byte str The message to be encrypted. associatedData : str or byte str, optional Associated data that will be MACed together with the ciphertext and algorithm; the associated data will not be encrypted. Returns ------- dict Dictionary structure containing: msg: {'ALG': symmetric cryptosystem. 'MODE': symmetric encryption mode. 'IV': the IV for the encryption algorithm. 'CipherText': the padded ciphertext (padding according to PKCS 7). } "alg": The HMAC algorithm. "digest": The MAC computed as MAC = HMAC(key, alg + associatedData + msg) Notes ----- The IV is included in the computation of the MAC. In fact, all cipher parameters are included: the encryption function returns a JSON object from a dictionary composed of the cipher parameters (e.g., algorithm, mode, IV), and the ciphertext. The MAC function uses the whole JSON object/string to compute the MAC, prepended with the HMAC algorithm + associatedData. The MAC key is computed as sha2(b'Poor Mans Key Extractor" + key). """ # warning only valid in the random oracle mac_key = sha2(b'Poor Mans Key Extractor' + self._key).digest() mac = MessageAuthenticator(mac_key) enc = super(AuthenticatedCryptoAbstraction, self).encrypt(msg) return mac.mac(enc, associatedData=associatedData)
def do_test_sha2_inserts(self, m, k, num_key): """ Test BloomSHA2 for specific parameters. """ keys = [] # set up distinct keys, each the hash of a unique value for i in range(num_key): sha = sha2() stuff = RNG.some_bytes(32) # 32 quasi-random bytes stuff[0] = i # guarantee uniqueness sha.update(stuff) keys.append(stuff) fltr = BloomSHA(m, k, key_bytes=32) for i in range(num_key): self.assertEqual(i, len(fltr)) keysel = KeySelector(keys[i], fltr) self.assertFalse(fltr.is_member(keysel), "key %d not yet in set, but found!" % i) fltr.insert(keysel) # add key to fltr for i in range(num_key): keysel = KeySelector(keys[i], fltr) self.assertTrue(fltr.is_member(keysel), "key %d has been added but not found in set" % i)