Exemplo n.º 1
0
from haystack import Finder
from haystack.database.sql import SQLDocumentStore
from haystack.indexing.cleaning import clean_wiki_text
from haystack.indexing.io import write_documents_to_db, fetch_archive_from_http
from haystack.reader.farm import FARMReader
from haystack.reader.transformers import TransformersReader
from haystack.retriever.tfidf import TfidfRetriever
from haystack.utils import print_answers

## Indexing & cleaning documents

# Let's first get some documents that we want to query
# Here: 517 Wikipedia articles for Game of Thrones
doc_dir = "data/article_txt_got"
s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/wiki_gameofthrones_txt.zip"
fetch_archive_from_http(url=s3_url, output_dir=doc_dir)

# The documents can be stored in different types of "DocumentStores".
# For dev we suggest a light-weight SQL DB
# For production we suggest elasticsearch
document_store = SQLDocumentStore(url="sqlite:///qa.db")

# Now, let's write the docs to our DB.
# You can optionally supply a cleaning function that is applied to each doc (e.g. to remove footers)
# It must take a str as input, and return a str.
write_documents_to_db(document_store=document_store,
                      document_dir=doc_dir,
                      clean_func=clean_wiki_text,
                      only_empty_db=True)

## Initalize Reader, Retriever & Finder
from haystack import Finder
from haystack.indexing.io import write_documents_to_db, fetch_archive_from_http
from haystack.indexing.cleaning import clean_wiki_text
from haystack.utils import print_answers


## Indexing & cleaning documents
# Init a database (default: sqllite)
from haystack.database import db
db.create_all()

# Let's first get some documents that we want to query
# Here: 517 Wikipedia articles for Game of Thrones
doc_dir = "data/article_txt_got"
s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/wiki_gameofthrones_txt.zip"
fetch_archive_from_http(url=s3_url, output_dir=doc_dir)

# Now, let's write the docs to our DB.
# You can supply a cleaning function that is applied to each doc (e.g. to remove footers)
# It must take a str as input, and return a str.
write_documents_to_db(document_dir=doc_dir, clean_func=clean_wiki_text, only_empty_db=True)


## Initalize Reader, Retriever & Finder

# A retriever identifies the k most promising chunks of text that might contain the answer for our question
# Retrievers use some simple but fast algorithm, here: TF-IDF
retriever = TfidfRetriever()

# A reader scans the text chunks in detail and extracts the k best answers
# Reader use more powerful but slower deep learning models, here: a BERT QA model trained via FARM on Squad 2.0