Exemplo n.º 1
0
def test_flat_base_default():
    """
    Verify that the default clustering of HDBSCAN is preserved.
    """
    # Given, the base HDBSCAN with method 'eom'
    clusterer = HDBSCAN(cluster_selection_method='eom').fit(X)
    n_clusters = n_clusters_from_labels(clusterer.labels_)

    # When we ask for flat clustering with same n_clusters,
    clusterer_flat = HDBSCAN_flat(X,
                                  n_clusters=n_clusters,
                                  cluster_selection_method='eom')

    # Then, the labels and probabilities should match
    assert_array_equal(clusterer_flat.labels_, clusterer.labels_)
    assert_array_equal(clusterer_flat.probabilities_, clusterer.probabilities_)

    # Given, the base HDBSCAN with method 'leaf'
    clusterer = HDBSCAN(cluster_selection_method='leaf').fit(X)
    n_clusters = n_clusters_from_labels(clusterer.labels_)

    # When we ask for flat clustering with same n_clusters,
    clusterer_flat = HDBSCAN_flat(X,
                                  n_clusters=n_clusters,
                                  cluster_selection_method='leaf')

    # Then, the labels and probabilities should match
    assert_array_equal(clusterer_flat.labels_, clusterer.labels_)
    assert_array_equal(clusterer_flat.probabilities_, clusterer.probabilities_)
    return
Exemplo n.º 2
0
def test_mem_vec_same_clusters():
    """
    Verify membership vector produces same n_clusters as clusterer
    """
    # Given a flat clustering trained for n_clusters picked by HDBSCAN,
    n_clusters_fit = None
    clusterer = HDBSCAN_flat(X, n_clusters=n_clusters_fit)

    # When membership_vector_flat is called with new data,
    memberships = membership_vector_flat(clusterer, X_test)

    # Then the number of clusters in memberships matches those of clusterer,
    assert_equal(memberships.shape[1],
                 n_clusters_from_labels(clusterer.labels_))
    # and the number of points should equal those in the test set
    assert_equal(len(memberships), len(X_test))
    # and all probabilities are <= 1.
    assert_array_less(memberships, np.ones(memberships.shape) + 1.e-14)

    # ========================================
    # Given a flat clustering for a specified n_clusters,
    n_clusters_fit = n_clusters_from_labels(clusterer.labels_) - 2
    clusterer = HDBSCAN_flat(X, n_clusters=n_clusters_fit)

    # When membership_vector_flat is called with new data,
    memberships = membership_vector_flat(clusterer, X_test)

    # Then the number of clusters in memberships matches those of clusterer,
    assert_equal(memberships.shape[1], n_clusters_fit)
    # and the number of points should equal those in the test set
    assert_equal(len(memberships), len(X_test))
    # and all probabilities are <= 1.
    assert_array_less(memberships, np.ones(memberships.shape) + 1.e-14)
    return
Exemplo n.º 3
0
def test_switch_to_leaf():
    """
    Verify that when we request more clusters than 'eom' can handle,
        method switches to 'leaf' and the results match 'leaf'.
    """
    # Given the max number of clusters that can be produced by 'eom',
    #   (these are produced for epsilon=0) (??? Needs verification)
    clusterer = HDBSCAN(cluster_selection_method='eom',
                        cluster_selection_epsilon=0).fit(X)
    max_clusters = n_clusters_from_labels(clusterer.labels_)

    with warnings.catch_warnings(record=True) as w:
        # When we try flat clustering with 'eom' method for more n_clusters,
        clusterer_flat = HDBSCAN_flat(X,
                                      cluster_selection_method='eom',
                                      n_clusters=max_clusters + 2)
        # Then, a warning is raised saying 'eom' can't get this clustering,
        assert len(w) > 0
        assert issubclass(w[-1].category, UserWarning)
        assert "Cannot predict" in str(w[-1].message)

    # the resulting clusterer switches to using method 'leaf',
    assert clusterer_flat.cluster_selection_method == 'leaf', (
        "cluster selection method has not switched to 'leaf'")
    # and the resulting probabilities and labels must match
    epsilon = clusterer_flat.cluster_selection_epsilon
    clusterer_leaf = HDBSCAN(cluster_selection_method='leaf',
                             cluster_selection_epsilon=epsilon).fit(X)
    assert_array_equal(clusterer_flat.labels_, clusterer_leaf.labels_)
    assert_array_equal(clusterer_flat.probabilities_,
                       clusterer_leaf.probabilities_)
    return
Exemplo n.º 4
0
def test_mem_vec_diff_clusters():
    """
    Verify membership vector produces as many clusters as requested
    """
    # Ignore user warnings in this function
    warnings.filterwarnings("ignore", category=UserWarning)

    # Given a flat clustering trained for n_clusters picked by HDBSCAN,
    n_clusters_fit = None
    clusterer = HDBSCAN_flat(X, n_clusters=n_clusters_fit)
    n_clusters_fitted = n_clusters_from_labels(clusterer.labels_)

    # When membership_vector_flat is called with new data for some n_clusters,
    n_clusters_predict = n_clusters_fitted + 3
    memberships = membership_vector_flat(clusterer,
                                         X_test,
                                         n_clusters=n_clusters_predict)

    # Then the number of clusters in memberships should be as requested,
    assert_equal(memberships.shape[1], n_clusters_predict)
    # and the number of points should equal those in the test set
    assert_equal(len(memberships), len(X_test))
    # and all probabilities are <= 1.
    assert_array_less(memberships, np.ones(memberships.shape) + 1.e-14)

    # ========================================
    # Given a flat clustering for a specified n_clusters,
    n_clusters_fit = n_clusters_from_labels(clusterer.labels_) + 2
    clusterer = HDBSCAN_flat(X, n_clusters=n_clusters_fit)

    # When membership_vector_flat is called with new data for some n_clusters,
    n_clusters_predict = n_clusters_fit + 3
    memberships = membership_vector_flat(clusterer,
                                         X_test,
                                         n_clusters=n_clusters_predict)

    # Then the number of clusters in memberships should be as requested,
    assert_equal(memberships.shape[1], n_clusters_predict)
    # and the number of points should equal those in the test set
    assert_equal(len(memberships), len(X_test))
    # and all probabilities are <= 1.
    assert_array_less(memberships, np.ones(memberships.shape) + 1.e-14)
    return
Exemplo n.º 5
0
def test_flat_base_epsilon():
    """
    Verify that a clustering of HDBSCAN specified by
        cluster_selection_epsilon is preserved.
    """
    # Method 'eom'...
    # Given, a flat clustering for required n_clusters,
    n_clusters = 4
    clusterer_flat = HDBSCAN_flat(X,
                                  n_clusters=n_clusters,
                                  cluster_selection_method='eom')

    # When we run the base HDBSCAN using it's epsilon,
    epsilon = clusterer_flat.cluster_selection_epsilon
    clusterer = HDBSCAN(cluster_selection_method='eom',
                        cluster_selection_epsilon=epsilon).fit(X)

    # Then, the labels and probabilities should match
    assert_array_equal(clusterer_flat.labels_, clusterer.labels_)
    assert_array_equal(clusterer_flat.probabilities_, clusterer.probabilities_)

    # Method 'leaf'...
    # Given, a flat clustering for required n_clusters,
    n_clusters = 6
    clusterer_flat = HDBSCAN_flat(X,
                                  n_clusters=n_clusters,
                                  cluster_selection_method='leaf')

    # When we run the base HDBSCAN using it's epsilon,
    epsilon = clusterer_flat.cluster_selection_epsilon
    clusterer = HDBSCAN(cluster_selection_method='leaf',
                        cluster_selection_epsilon=epsilon).fit(X)

    # Then, the labels and probabilities should match
    assert_array_equal(clusterer_flat.labels_, clusterer.labels_)
    assert_array_equal(clusterer_flat.probabilities_, clusterer.probabilities_)
    return
Exemplo n.º 6
0
def test_approx_predict_same_clusters():
    """
    Verify that approximate_predict_flat produces as many clusters as clusterer
    """
    # Given a flat clustering trained for some n_clusters,
    n_clusters = 5
    clusterer = HDBSCAN_flat(X, cluster_selection_method='eom',
                             n_clusters=n_clusters)

    # When using approximate_predict_flat without specifying n_clusters,
    labels_flat, proba_flat = approximate_predict_flat(
                                    clusterer, X_test, n_clusters=None)

    # Then, the number of clusters produced must match the original n_clusters
    n_clusters_out = n_clusters_from_labels(labels_flat)
    assert(n_clusters_out == n_clusters)
    # and all probabilities are <= 1.
    assert_array_less(proba_flat, np.ones(len(proba_flat))+1.e-14)
    return
Exemplo n.º 7
0
def test_approx_predict_diff_clusters():
    """
    Verify that approximate_predict_flat produces as many clusters as asked
    """
    # Given a flat clustering trained for some n_clusters,
    n_clusters_fit = 5
    clusterer = HDBSCAN_flat(X,
                             cluster_selection_method='eom',
                             n_clusters=n_clusters_fit,
                             prediction_data=True)

    # When using approximate_predict_flat with specified n_clusters,
    n_clusters_predict = 3
    labels_flat, proba_flat = approximate_predict_flat(
        clusterer, X_test, n_clusters=n_clusters_predict)

    # Then, the requested number of clusters must be produced
    n_clusters_out = n_clusters_from_labels(labels_flat)
    assert_equal(n_clusters_out, n_clusters_predict)
    # and all probabilities are <= 1.
    assert_array_less(proba_flat, np.ones(len(proba_flat)) + 1.e-14)

    # When using approximate_predict_flat with more clusters
    #   than 'eom' can handle,
    n_clusters_predict = 12
    with warnings.catch_warnings(record=True) as w:
        labels_flat, proba_flat = approximate_predict_flat(
            clusterer, X_test, n_clusters=n_clusters_predict)
        # Then, a warning is raised saying 'eom' can't get this clustering,
        assert len(w) > 0
        assert issubclass(w[-1].category, UserWarning)
        assert "Cannot predict" in str(w[-1].message)
    # But the requested number of clusters must still be produced using 'leaf'
    n_clusters_out = n_clusters_from_labels(labels_flat)
    assert_equal(n_clusters_out, n_clusters_predict)
    # and all probabilities are <= 1.
    assert_array_less(proba_flat, np.ones(len(proba_flat)) + 1.e-14)
    return