Exemplo n.º 1
0
def run_paths_of_merges(yamlfile, logging=True):

    ipl = IPL(yaml=yamlfile)

    ipl.set_indent(1)

    params = rdict(data=ipl.get_params())
    if logging:
        ipl.startlogger(filename=params['resultfolder'] +
                        'paths_of_merges.log',
                        type='w',
                        name='PathsOfMerges')
    else:
        ipl.startlogger()

    try:

        # # Copy the script file and the parameters to the scriptsfolder
        # copy(inspect.stack()[0][1], params['scriptsfolder'])
        # copy(yamlfile, params['scriptsfolder'] + 'paths_of_merges.parameters.yml')

        # ipl.logging('\nInitial datastructure: \n\n{}', ipl.datastructure2string(maxdepth=3))

        paths_of_merges(ipl, params['debug'])

        # ipl.logging('\nFinal datastructure: \n\n{}', ipl.datastructure2string(maxdepth=3))

        # ipl.write(filepath=params['intermedfolder'] + params['largeobjfile'])

        ipl.logging('')
        ipl.stoplogger()

    except:

        ipl.errout('Unexpected error')
Exemplo n.º 2
0
def run_random_forest(yamlfile,
                      logging=True,
                      make_only_feature_array=False,
                      debug=False,
                      write=True):

    ipl = IPL(yaml=yamlfile)

    ipl.set_indent(1)

    params = rdict(data=ipl.get_params())
    if logging:
        ipl.startlogger(filename=params['resultfolder'] + 'random_forest.log',
                        type='w',
                        name='RandomForest')
    else:
        ipl.startlogger()

    try:

        # # Copy the script file and the parameters to the scriptsfolder
        # copy(inspect.stack()[0][1], params['scriptsfolder'])
        # copy(yamlfile, params['scriptsfolder'] + 'random_forest.parameters.yml')

        # ipl.logging('\nInitial datastructure: \n\n{}', ipl.datastructure2string(maxdepth=3))

        if make_only_feature_array:
            make_feature_arrays(ipl)
        else:
            result = IPL()
            result['result'], result['evaluation'] = random_forest(ipl,
                                                                   debug=debug)

            # ipl.logging('\nFinal datastructure: \n\n{}', ipl.datastructure2string(maxdepth=3))

            if write:
                result.write(filepath=params['resultfolder'] +
                             params['resultsfile'])

        ipl.logging('')
        ipl.stoplogger()

    except:
        ipl.errout('Unexpected error')
Exemplo n.º 3
0
def run_remove_small_objects(yamlfile):

    ipl = IPL(yaml=yamlfile,
              yamlspec={
                  'path': 'datafolder',
                  'filename': 'labelsfile',
                  'skeys': 'labelsname'
              },
              recursive_search=True,
              nodata=True)

    # Set indentation of the logging
    ipl.set_indent(1)

    params = ipl.get_params()
    ipl.startlogger(filename=params['resultfolder'] +
                    'remove_small_objects.log',
                    type='w',
                    name='RemoveSmallObjects')

    try:

        # # Copy the script file and the parameters to the scriptsfolder
        # copy(inspect.stack()[0][1], params['scriptsfolder'])
        # copy(yamlfile, params['scriptsfolder'] + 'remove_small_objects.parameters.yml')

        ipl.logging('\nipl datastructure: \n\n{}',
                    ipl.datastructure2string(maxdepth=3))

        remove_small_objects(ipl)

        ipl.logging('\nFinal datastructure: \n\n{}',
                    ipl.datastructure2string(maxdepth=3))

        # ipl.write(filepath=params['intermedfolder'] + params['largeobjfile'])

        ipl.logging('')
        ipl.stoplogger()

    except:

        ipl.errout('Unexpected error')
Exemplo n.º 4
0

if __name__ == '__main__':

    resultsfolder = '/mnt/localdata02/jhennies/neuraldata/results/cremi_2016/161110_random_forest_of_paths/'

    yamlfile = resultsfolder + '/parameters.yml'

    features = IPL(yaml=yamlfile,
                   yamlspec={
                       'path': 'intermedfolder',
                       'filename': 'featurefile'
                   })
    params = features.get_params()
    thisparams = params['random_forest']
    features.startlogger(filename=params['resultfolder'] + 'random_forest.log',
                         type='w')

    try:

        # Copy the script file and the parameters to the scriptsfolder
        copy(inspect.stack()[0][1], params['scriptsfolder'])
        copy(yamlfile,
             params['scriptsfolder'] + 'random_forest.parameters.yml')
        # Write script and parameters to the logfile
        features.code2log(inspect.stack()[0][1])
        features.logging('')
        features.yaml2log()
        features.logging('')

        features.logging('\nfeatures datastructure: \n---\n{}',
                         features.datastructure2string(maxdepth=2))
Exemplo n.º 5
0
    yamlfile = os.path.dirname(os.path.abspath(__file__)) + '/parameters.yml'

    hfp = IPL(yaml=yamlfile,
              yamlspec={
                  'path': 'intermedfolder',
                  'filename': 'locmaxborderfile',
                  'skeys': {
                      'locmaxbordernames': (2, 3)
                  }
              },
              tkeys=('disttransf', 'disttransfm'),
              castkey=None)
    params = hfp.get_params()
    thisparams = params['localmax_on_disttransf']
    hfp.startlogger(filename=params['resultfolder'] +
                    'localmax_on_disttransf.log',
                    type='w')

    try:

        # Copy the script file and the parameters to the scriptsfolder
        copy(inspect.stack()[0][1], params['scriptsfolder'])
        copy(yamlfile,
             params['scriptsfolder'] + 'localmax_on_disttransf.parameters.yml')
        # Write script and parameters to the logfile
        hfp.code2log(inspect.stack()[0][1])
        hfp.logging('')
        hfp.yaml2log()
        hfp.logging('')

        hfp.logging('\nhfp datastructure: \n\n{}',

if __name__ == '__main__':

    resultsfolder = '/mnt/localdata02/jhennies/neuraldata/results/cremi_2016/161110_random_forest_of_paths/'

    yamlfile = resultsfolder + '/parameters.yml'

    ipl = IPL(yaml=yamlfile,
              yamlspec={
                  'path': 'datafolder',
                  'filename': 'labelsfile'
              })
    params = ipl.get_params()
    ipl.startlogger(filename=params['resultfolder'] +
                    'remove_small_objects.log',
                    type='a')

    try:

        # Create folder for scripts
        if not os.path.exists(params['scriptsfolder']):
            os.makedirs(params['scriptsfolder'])
        else:
            if params['overwriteresults']:
                ipl.logging(
                    'remove_small_objects: Warning: Scriptsfolder already exists and content will be overwritten...\n'
                )
            else:
                raise IOError(
                    'remove_small_objects: Error: Scriptsfolder already exists!'
Exemplo n.º 7
0
              tkeys='true',
              castkey=None)

    params = hfp.get_params()

    hfp.data_from_file(filepath=params['intermedfolder'] +
                       params['pathsfalsefile'],
                       tkeys='false',
                       castkey=None)

    hfp.data_from_file(filepath=params['intermedfolder'] +
                       params['locmaxfile'],
                       skeys=('disttransf', 'disttransfm'),
                       tkeys=('disttransf', 'disttransfm'))

    hfp.startlogger()

    try:

        hfp.logging('hfp datastructure:\n---\n{}---',
                    hfp.datastructure2string(maxdepth=2))

        hfp.anytask(lib.getvaluesfromcoords,
                    reciprocal=True,
                    keys='disttransfm',
                    indict=hfp['false', '6155_9552'],
                    tkeys='result_false')

        hfp.logging('hfp datastructure:\n---\n{}---',
                    hfp.datastructure2string(maxdepth=2))

if __name__ == '__main__':

    resultsfolder = '/mnt/localdata02/jhennies/neuraldata/results/cremi_2016/161110_random_forest_of_paths/'

    yamlfile = resultsfolder + '/parameters.yml'

    ipl = IPL(yaml=yamlfile,
              yamlspec={
                  'path': 'intermedfolder',
                  'filename': 'largeobjfile'
              })
    params = ipl.get_params()
    ipl.startlogger(filename=params['resultfolder'] +
                    'merge_adjacent_objects.log',
                    type='w')

    try:

        # Copy the script file and the parameters to the scriptsfolder
        copy(inspect.stack()[0][1], params['scriptsfolder'])
        copy(yamlfile,
             params['scriptsfolder'] + 'merge_adjacent_objects.parameters.yml')
        # Write script and parameters to the logfile
        ipl.code2log(inspect.stack()[0][1])
        ipl.logging('')
        ipl.yaml2log()
        ipl.logging('')

        ipl.logging('\nipl datastructure: \n\n{}',
    # ipl['true', 'locmax'] = IPL(data=ipl['largeobj', 'locmax', 'path'])
    # ipl.pop('largeobj')

    ipl.data_from_file(filepath=params['intermedfolder'] + params['pathsfalsefile'],
                       skeys='path', recursive_search=True, integrate=True)
    ipl.rename_layer('largeobjm', 'false')
    ipl.remove_layer('path')

    # ipl['false', 'border'] = IPL(data=ipl['largeobjm', 'border_locmax_m', 'path'])
    # ipl['false', 'locmax'] = IPL(data=ipl['largeobjm', 'locmaxm', 'path'])
    # ipl.pop('largeobjm')
    #
    # ipl.pop('pathsim')
    # ipl.pop('overlay')

    ipl.startlogger(filename=params['resultfolder']+'features_of_paths.log', type='w')

    try:

        ipl.code2log(inspect.stack()[0][1])
        ipl.logging('')
        ipl.yaml2log()
        ipl.logging('')

        ipl.logging('\nipl datastructure: \n\n{}', ipl.datastructure2string(maxdepth=4))

        # Done: Make path image (true)
        # Done: Make path image (false)
        # TODO: Get topological features
        # TODO:     Topological feature: Length (with respect to anisotropy!)
        # TODO:     Topological feature: Statistics on curvature
    ipl = IPL(yaml=yamlfile,
              yamlspec={
                  'path': 'intermedfolder',
                  'filename': 'largeobjfile',
                  'skeys': 'largeobjname'
              },
              recursive_search=True)
    params = ipl.get_params()
    thisparams = params['find_border_contacts']
    ipl.data_from_file(params['intermedfolder'] + params['largeobjmfile'],
                       skeys=params['largeobjmnames'][0],
                       recursive_search=True,
                       integrate=True)
    ipl.startlogger(filename=params['resultfolder'] +
                    'find_border_contacts.log',
                    type='w')

    try:

        # Copy the script file and the parameters to the scriptsfolder
        copy(inspect.stack()[0][1], params['scriptsfolder'])
        copy(yamlfile,
             params['scriptsfolder'] + 'find_border_contacts.parameters.yml')
        # Write script and parameters to the logfile
        ipl.code2log(inspect.stack()[0][1])
        ipl.logging('')
        ipl.yaml2log()
        ipl.logging('')

        ipl.logging('\nipl datastructure: \n---\n{}',
Exemplo n.º 11
0
if __name__ == '__main__':

    yamlfile = os.path.dirname(os.path.abspath(__file__)) + '/parameters.yml'

    hfp = IPL(
        yaml=yamlfile,
        yamlspec={'path': 'intermedfolder', 'filename': 'largeobjfile', 'skeys': 'largeobjname'},
        tkeys='largeobj',
        castkey=None
    )
    params = hfp.get_params()
    thisparams = params['find_border_contacts']
    hfp.data_from_file(params['intermedfolder'] + params['largeobjmfile'],
                       skeys=params['largeobjmnames'][0], tkeys='largeobjm')
    hfp.startlogger(filename=params['resultfolder'] + 'find_orphans.log', type='w')

    try:

        # Copy the script file and the parameters to the scriptsfolder
        copy(inspect.stack()[0][1], params['scriptsfolder'])
        copy(yamlfile, params['scriptsfolder'] + 'find_orphans.parameters.yml')
        # Write script and parameters to the logfile
        hfp.code2log(inspect.stack()[0][1])
        hfp.logging('')
        hfp.yaml2log()
        hfp.logging('')

        hfp.logging('\nhfp datastructure: \n---\n{}', hfp.datastructure2string(maxdepth=1))

        if thisparams['return_bordercontact_images']:
    yamlfile = os.path.dirname(os.path.abspath(__file__)) + '/parameters.yml'

    hfp = IPL(yaml=yamlfile,
              yamlspec={
                  'path': 'intermedfolder',
                  'filename': 'locmaxborderfile',
                  'skeys': {
                      'locmaxbordernames': (0, 2)
                  }
              },
              tkeys=('border_locmax', 'disttransf'),
              castkey=None)
    params = hfp.get_params()
    thisparams = params['paths_within_labels']
    hfp.startlogger(filename=params['resultfolder'] +
                    'paths_within_labels.log',
                    type='w')
    hfp.data_from_file(params['intermedfolder'] + params['largeobjfile'],
                       skeys=params['largeobjname'],
                       tkeys='largeobj')
    hfp.data_from_file(params['intermedfolder'] + params['locmaxfile'],
                       skeys=params['locmaxnames'][0],
                       tkeys='locmax')

    try:

        # Copy the script file and the parameters to the scriptsfolder
        copy(inspect.stack()[0][1], params['scriptsfolder'])
        copy(yamlfile,
             params['scriptsfolder'] + 'paths_within_labels.parameters.yml')
        # Write script and parameters to the logfile
#         pass


if __name__ == '__main__':

    yamlfile = os.path.dirname(os.path.abspath(__file__)) + '/parameters.yml'

    hfp = IPL(
        yaml=yamlfile,
        yamlspec={'path': 'intermedfolder', 'filename': 'locmaxborderfile', 'skeys': {'locmaxbordernames': (1, 3)}},
        tkeys=('border_locmax_m', 'disttransfm'),
        castkey=None
    )
    params = hfp.get_params()
    thisparams = params['paths_of_partners']
    hfp.startlogger(filename=params['resultfolder'] + 'paths_of_partners.log', type='w')
    hfp.data_from_file(params['intermedfolder'] + params['largeobjfile'],
                       skeys=params['largeobjname'],
                       tkeys='largeobj')
    hfp.data_from_file(params['intermedfolder'] + params['largeobjmfile'],
                       skeys=(params['largeobjmnames'][0], params['largeobjmnames'][4]),
                       tkeys=('largeobjm', 'change_hash'))
    hfp.data_from_file(params['intermedfolder'] + params['locmaxfile'],
                       skeys=params['locmaxnames'][0],
                       tkeys='locmaxm')

    try:

        # Copy the script file and the parameters to the scriptsfolder
        copy(inspect.stack()[0][1], params['scriptsfolder'])
        copy(yamlfile, params['scriptsfolder'] + 'paths_of_partners.parameters.yml')
Exemplo n.º 14
0
    # # TODO: Insert code here
    # hfp = Hdf5ImageProcessingLib(
    #     yaml=yamlfile,
    #     yamlspec={'path': 'intermedfolder', 'filename': 'pathstruefile'},
    #     tkeys='true',
    #     castkey=None
    # )
    # params = hfp.get_params()
    # hfp.logging('params = {}', params)
    # hfp.data_from_file(
    #     filepath=params['intermedfolder'] + params['pathsfalsefile'],
    #     tkeys='false',
    #     castkey=None
    # )
    hfp.startlogger(filename=params['intermedfolder'] +
                    'features_of_paths.log',
                    type='a')

    try:

        hfp.code2log(inspect.stack()[0][1])
        hfp.logging('')
        hfp.yaml2log()
        hfp.logging('')

        hfp.logging('\nhfp datastructure: \n\n{}',
                    hfp.datastructure2string(maxdepth=1))

        # Done: Iterate over paths and accumulate features
        # Done: Implement data iterator