Exemplo n.º 1
0
class TrainingApplication(Application):
    name = Unicode(u'hdnnpy train')
    description = 'Train a HDNNP to optimize given properties.'

    is_resume = Bool(
        False,
        help='Resume flag used internally.')
    resume_dir = Path(
        None,
        allow_none=True,
        help='This option can be set only by command line.')
    verbose = Bool(
        False,
        help='Set verbose mode'
        ).tag(config=True)

    classes = List([DatasetConfig, ModelConfig, TrainingConfig])

    config_file = Path(
        'training_config.py',
        help='Load this config file')

    aliases = Dict({
        'resume': 'TrainingApplication.resume_dir',
        'log_level': 'Application.log_level',
        })

    flags = Dict({
        'verbose': ({
            'TrainingApplication': {
                'verbose': True,
                },
            }, 'Set verbose mode'),
        'v': ({
            'TrainingApplication': {
                'verbose': True,
                },
            }, 'Set verbose mode'),
        'debug': ({
            'Application': {
                'log_level': 10,
                },
            }, 'Set log level to DEBUG'),
        })

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.dataset_config = None
        self.model_config = None
        self.training_config = None
        self.loss_function = None

    def initialize(self, argv=None):
        # temporarily set `resume_dir` configurable
        self.__class__.resume_dir.tag(config=True)
        self.parse_command_line(argv)

        if self.resume_dir is not None:
            self.is_resume = True
            self.config_file = self.resume_dir.with_name(self.config_file.name)
        self.load_config_file(self.config_file)

        self.dataset_config = DatasetConfig(config=self.config)
        self.model_config = ModelConfig(config=self.config)
        self.training_config = TrainingConfig(config=self.config)
        if self.is_resume:
            self.training_config.out_dir = self.resume_dir.parent
        name, _ = self.training_config.loss_function
        self.loss_function = LOSS_FUNCTION[name]

    def start(self):
        tc = self.training_config
        tc.out_dir.mkdir(parents=True, exist_ok=True)
        if not self.is_resume:
            shutil.copy(self.config_file,
                        tc.out_dir / self.config_file.name)
        tag_xyz_map, tc.elements = parse_xyz(
            tc.data_file, verbose=self.verbose)
        datasets = self.construct_datasets(tag_xyz_map)
        dataset = DatasetGenerator(*datasets).holdout(tc.train_test_ratio)
        result = self.train(dataset)
        if MPI.rank == 0:
            self.dump_result(result)

    def construct_datasets(self, tag_xyz_map):
        dc = self.dataset_config
        mc = self.model_config
        tc = self.training_config

        preprocess_dir = tc.out_dir / 'preprocess'
        preprocess_dir.mkdir(parents=True, exist_ok=True)
        preprocesses = []
        for (name, args, kwargs) in dc.preprocesses:
            preprocess = PREPROCESS[name](*args, **kwargs)
            if self.is_resume:
                preprocess.load(
                    preprocess_dir / f'{name}.npz', verbose=self.verbose)
            preprocesses.append(preprocess)

        datasets = []
        for pattern in tc.tags:
            for tag in fnmatch.filter(tag_xyz_map, pattern):
                if self.verbose:
                    pprint(f'Construct sub dataset tagged as "{tag}"')
                tagged_xyz = tag_xyz_map.pop(tag)
                structures = AtomicStructure.read_xyz(tagged_xyz)

                # prepare descriptor dataset
                descriptor = DESCRIPTOR_DATASET[dc.descriptor](
                    self.loss_function.order['descriptor'],
                    structures, **dc.parameters)
                descriptor_npz = tagged_xyz.with_name(f'{dc.descriptor}.npz')
                if descriptor_npz.exists():
                    descriptor.load(
                        descriptor_npz, verbose=self.verbose, remake=dc.remake)
                else:
                    descriptor.make(verbose=self.verbose)
                    descriptor.save(descriptor_npz, verbose=self.verbose)

                # prepare property dataset
                property_ = PROPERTY_DATASET[dc.property_](
                    self.loss_function.order['property'], structures)
                property_npz = tagged_xyz.with_name(f'{dc.property_}.npz')
                if property_npz.exists():
                    property_.load(
                        property_npz, verbose=self.verbose, remake=dc.remake)
                else:
                    property_.make(verbose=self.verbose)
                    property_.save(property_npz, verbose=self.verbose)

                # construct HDNNP dataset from descriptor & property datasets
                dataset = HDNNPDataset(descriptor, property_)
                dataset.construct(
                    all_elements=tc.elements, preprocesses=preprocesses,
                    shuffle=True, verbose=self.verbose)
                dataset.scatter()
                datasets.append(dataset)
                dc.n_sample += dataset.total_size
                mc.n_input = dataset.n_input
                mc.n_output = dataset.n_label

        for preprocess in preprocesses:
            preprocess.save(
                preprocess_dir / f'{preprocess.name}.npz',
                verbose=self.verbose)

        return datasets

    def train(self, dataset, comm=None):
        mc = self.model_config
        tc = self.training_config
        if comm is None:
            comm = chainermn.create_communicator('naive', MPI.comm)
        result = {'training_time': 0.0, 'observation': []}

        # model and optimizer
        master_nnp = MasterNNP(
            tc.elements, mc.n_input, mc.hidden_layers, mc.n_output)
        master_opt = chainer.optimizers.Adam(tc.init_lr)
        master_opt = chainermn.create_multi_node_optimizer(master_opt, comm)
        master_opt.setup(master_nnp)
        master_opt.add_hook(chainer.optimizer_hooks.Lasso(tc.l1_norm))
        master_opt.add_hook(chainer.optimizer_hooks.WeightDecay(tc.l2_norm))

        for training, test in dataset:
            tag = training.tag
            properties = training.property.properties

            # iterators
            train_iter = chainer.iterators.SerialIterator(
                training, tc.batch_size // MPI.size, repeat=True, shuffle=True)
            test_iter = chainer.iterators.SerialIterator(
                test, tc.batch_size // MPI.size, repeat=False, shuffle=False)

            # model
            hdnnp = HighDimensionalNNP(
                training.elemental_composition,
                mc.n_input, mc.hidden_layers, mc.n_output)
            hdnnp.sync_param_with(master_nnp)
            main_opt = chainer.Optimizer()
            main_opt = chainermn.create_multi_node_optimizer(main_opt, comm)
            main_opt.setup(hdnnp)

            # loss function
            _, kwargs = tc.loss_function
            loss_function = self.loss_function(hdnnp, properties, **kwargs)
            observation_keys = loss_function.observation_keys

            # triggers
            interval = (tc.interval, 'epoch')
            stop_trigger = EarlyStoppingTrigger(
                check_trigger=interval,
                monitor=f'val/main/{observation_keys[-1]}',
                patients=tc.patients, mode='min',
                verbose=self.verbose, max_trigger=(tc.epoch, 'epoch'))

            # updater and trainer
            updater = Updater(train_iter,
                              {'main': main_opt, 'master': master_opt},
                              loss_func=loss_function.eval)
            out_dir = tc.out_dir / tag
            trainer = chainer.training.Trainer(updater, stop_trigger, out_dir)

            # extensions
            trainer.extend(ext.ExponentialShift('alpha', 1 - tc.lr_decay,
                                                target=tc.final_lr,
                                                optimizer=master_opt))
            evaluator = chainermn.create_multi_node_evaluator(
                ext.Evaluator(test_iter, hdnnp, eval_func=loss_function.eval),
                comm)
            trainer.extend(evaluator, name='val')
            if tc.scatter_plot:
                trainer.extend(ScatterPlot(test, hdnnp, comm),
                               trigger=interval)
            if MPI.rank == 0:
                if tc.log_report:
                    trainer.extend(ext.LogReport(log_name='training.log'))
                if tc.print_report:
                    trainer.extend(ext.PrintReport(
                        ['epoch', 'iteration']
                        + [f'main/{key}' for key in observation_keys]
                        + [f'val/main/{key}' for key in observation_keys]))
                if tc.plot_report:
                    trainer.extend(ext.PlotReport(
                        [f'main/{key}' for key in observation_keys],
                        x_key='epoch', postprocess=set_log_scale,
                        file_name='training_set.png', marker=None))
                    trainer.extend(ext.PlotReport(
                        [f'val/main/{key}' for key in observation_keys],
                        x_key='epoch', postprocess=set_log_scale,
                        file_name='validation_set.png', marker=None))

            manager = Manager(tag, trainer, result, is_snapshot=True)
            if self.is_resume:
                manager.check_to_resume(self.resume_dir.name)
            if manager.allow_to_run:
                with manager:
                    trainer.run()

        if MPI.rank == 0:
            chainer.serializers.save_npz(
                tc.out_dir / 'master_nnp.npz', master_nnp)

        return result

    def dump_result(self, result):
        yaml.add_representer(pathlib.PosixPath, pyyaml_path_representer)
        result_file = self.training_config.out_dir / 'training_result.yaml'
        with result_file.open('w') as f:
            yaml.dump({
                'dataset': self.dataset_config.dump(),
                'model': self.model_config.dump(),
                'training': self.training_config.dump(),
                }, f, default_flow_style=False)
            yaml.dump({
                'result': result,
                }, f, default_flow_style=False)
Exemplo n.º 2
0
class TrainingApplication(Application):
    name = Unicode(u'hdnnpy train')
    description = 'Train a HDNNP to optimize given properties.'

    is_resume = Bool(False, help='Resume flag used internally.')
    resume_dir = Path(None,
                      allow_none=True,
                      help='This option can be set only by command line.')
    verbose = Bool(False, help='Set verbose mode').tag(config=True)

    classes = List([DatasetConfig, ModelConfig, TrainingConfig])

    config_file = Path('training_config.py', help='Load this config file')

    aliases = Dict({
        'resume': 'TrainingApplication.resume_dir',
        'log_level': 'Application.log_level',
    })

    flags = Dict({
        'verbose': ({
            'TrainingApplication': {
                'verbose': True,
            },
        }, 'Set verbose mode'),
        'v': ({
            'TrainingApplication': {
                'verbose': True,
            },
        }, 'Set verbose mode'),
        'debug': ({
            'Application': {
                'log_level': 10,
            },
        }, 'Set log level to DEBUG'),
    })

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.dataset_config = None
        self.model_config = None
        self.training_config = None
        self.loss_function = None

    def initialize(self, argv=None):
        # temporarily set `resume_dir` configurable
        self.__class__.resume_dir.tag(config=True)
        self.parse_command_line(argv)

        if self.resume_dir is not None:
            self.is_resume = True
            self.config_file = self.resume_dir.with_name(self.config_file.name)
        self.load_config_file(self.config_file)

        self.dataset_config = DatasetConfig(config=self.config)
        self.model_config = ModelConfig(config=self.config)
        self.training_config = TrainingConfig(config=self.config)
        if self.is_resume:
            self.training_config.out_dir = self.resume_dir.parent
        name, _ = self.training_config.loss_function
        self.loss_function = LOSS_FUNCTION[name]

    def start(self):

        tc = self.training_config
        tc.out_dir.mkdir(parents=True, exist_ok=True)
        if not self.is_resume:
            shutil.copy(self.config_file, tc.out_dir / self.config_file.name)
        tag_xyz_map, tc.elements = parse_xyz(tc.data_file,
                                             verbose=self.verbose)

        #2020/3/26 making hold out before PCA
        #split xyz data to train and test
        #then, construct dataset
        #the procedure is as follows:
        #1. temporaly save to train.xyz and test.xyz for each tag and
        #   map the tag to each file
        #2. construct the symmetry function data and PCA fit for training data
        #3. construct the symmetry function and apply PCA preprocess obtained by step 2

        #print(tag_xyz_map)

        #hold out procedure
        tag_training_xyz_map = {}
        tag_test_xyz_map = {}
        train_descriptor_npz = []
        test_descriptor_npz = []

        for pattern in tc.tags:
            for tag in fnmatch.filter(tag_xyz_map, pattern):
                if self.verbose:
                    pprint(f'holdout xyz data tagged as "{tag}"')
                tagged_xyz = tag_xyz_map.get(tag)

                train_descriptor_npz.append(
                    tagged_xyz.with_name(
                        f'{self.dataset_config.descriptor}.npz').exists())
                test_descriptor_npz.append(
                    tagged_xyz.with_name(
                        f'{self.dataset_config.descriptor}-test.npz').exists())
                #print(tagged_xyz)
                xyz_data = ase.io.read(str(tagged_xyz),
                                       index=':',
                                       format='xyz')

                random.shuffle(xyz_data)
                s = int(len(xyz_data) * tc.train_test_ratio)
                train = xyz_data[:s]
                test = xyz_data[s:]
                assert len(train) > 0
                assert len(test) > 0

                ase.io.write(str(tc.data_file.with_name(tag)) + "/train.xyz",
                             train,
                             format='xyz')
                ase.io.write(str(tc.data_file.with_name(tag)) + "/test.xyz",
                             test,
                             format='xyz')
                #print(tc.data_file.__class__)

                tag_training_xyz_map[tag] = (tc.data_file.with_name(tag) /
                                             'train.xyz')
                tag_test_xyz_map[tag] = (tc.data_file.with_name(tag) /
                                         'test.xyz')

        #decide load the npz for descriptor or not
        #if descriptor npz found in all tag, then load
        load_descriptor = False
        if (all(train_descriptor_npz) and all(test_descriptor_npz)):
            load_descriptor = True
            pprint(
                f'reuse the preserved descriptor data. train.xyz and test.xyz data is not used.'
            )

        train_datasets = self.construct_training_datasets(
            tag_training_xyz_map, load_descriptor)
        test_datasets = self.construct_test_datasets(tag_test_xyz_map,
                                                     load_descriptor)
        '''
        for t in train_datasets:
            print(t.tag)
            print(t.property.properties)
        '''

        #reshapse the form of dataset
        dataset = []
        for train in train_datasets:
            test_dataset = None
            for test in test_datasets:
                if (test.tag == train.tag):
                    test_dataset = test
            dataset.append((train, test))

        #test print
        '''
        for training, test in dataset:
            print(training.tag)
            print(test.tag)
            print(training.property.properties)
            print(test.property.properties)
        '''

        #original detaset generation
        #In this case, PCA use all data to constract transform matrix
        '''
        datasets = self.construct_datasets(tag_xyz_map)
        dataset = DatasetGenerator(*datasets).holdout(tc.train_test_ratio)
        '''

        ## Stop process here if no_train flag is set
        #print(tc.no_train)
        if tc.no_train:
            print('Process is stopped by no_train flag')
            sys.exit()
        ## End of stopping process

        result = self.train(dataset)
        if MPI.rank == 0:
            self.dump_result(result)

    #original one
    def construct_datasets(self, tag_xyz_map):
        dc = self.dataset_config
        mc = self.model_config
        tc = self.training_config

        preprocess_dir = tc.out_dir / 'preprocess'
        preprocess_dir.mkdir(parents=True, exist_ok=True)
        preprocesses = []
        for (name, args, kwargs) in dc.preprocesses:
            preprocess = PREPROCESS[name](*args, **kwargs)
            if self.is_resume:
                preprocess.load(preprocess_dir / f'{name}.npz',
                                verbose=self.verbose)
            preprocesses.append(preprocess)

        datasets = []
        for pattern in tc.tags:
            for tag in fnmatch.filter(tag_xyz_map, pattern):
                if self.verbose:
                    pprint(f'Construct sub dataset tagged as "{tag}"')
                tagged_xyz = tag_xyz_map.pop(tag)
                structures = AtomicStructure.read_xyz(tagged_xyz)

                # prepare descriptor dataset
                descriptor = DESCRIPTOR_DATASET[dc.descriptor](
                    self.loss_function.order['descriptor'], structures,
                    **dc.parameters)
                descriptor_npz = tagged_xyz.with_name(f'{dc.descriptor}.npz')
                if descriptor_npz.exists():
                    descriptor.load(descriptor_npz,
                                    verbose=self.verbose,
                                    remake=dc.remake)
                else:
                    descriptor.make(verbose=self.verbose)
                    descriptor.save(descriptor_npz, verbose=self.verbose)

                # prepare property dataset
                property_ = PROPERTY_DATASET[dc.property_](
                    self.loss_function.order['property'], structures)
                property_npz = tagged_xyz.with_name(f'{dc.property_}.npz')
                if property_npz.exists():
                    property_.load(property_npz,
                                   verbose=self.verbose,
                                   remake=dc.remake)
                else:
                    property_.make(verbose=self.verbose)
                    property_.save(property_npz, verbose=self.verbose)

                # construct HDNNP dataset from descriptor & property datasets
                dataset = HDNNPDataset(descriptor, property_)
                dataset.construct(all_elements=tc.elements,
                                  preprocesses=preprocesses,
                                  shuffle=True,
                                  verbose=self.verbose)
                dataset.scatter()
                datasets.append(dataset)
                dc.n_sample += dataset.total_size
                mc.n_input = dataset.n_input
                mc.n_output = dataset.n_label

        for preprocess in preprocesses:
            preprocess.save(preprocess_dir / f'{preprocess.name}.npz',
                            verbose=self.verbose)

        return datasets

    #for preprocess, only use training dataset
    def construct_training_datasets(self, tag_xyz_map, load_descriptor):
        dc = self.dataset_config
        mc = self.model_config
        tc = self.training_config

        preprocess_dir = tc.out_dir / 'preprocess'
        preprocess_dir.mkdir(parents=True, exist_ok=True)
        preprocesses = []
        for (name, args, kwargs) in dc.preprocesses:
            preprocess = PREPROCESS[name](*args, **kwargs)
            if self.is_resume:
                preprocess.load(preprocess_dir / f'{name}.npz',
                                verbose=self.verbose)
            preprocesses.append(preprocess)

        datasets = []
        for pattern in tc.tags:
            for tag in fnmatch.filter(tag_xyz_map, pattern):
                if self.verbose:
                    pprint(f'Construct sub training dataset tagged as "{tag}"')
                tagged_xyz = tag_xyz_map.pop(tag)
                structures = AtomicStructure.read_xyz(tagged_xyz)

                # prepare descriptor dataset
                descriptor = DESCRIPTOR_DATASET[dc.descriptor](
                    self.loss_function.order['descriptor'], structures,
                    **dc.parameters)
                descriptor_npz = tagged_xyz.with_name(f'{dc.descriptor}.npz')
                if load_descriptor:
                    descriptor.load(descriptor_npz,
                                    verbose=self.verbose,
                                    remake=dc.remake)
                else:
                    descriptor.make(verbose=self.verbose)
                    descriptor.save(descriptor_npz, verbose=self.verbose)

                # prepare property dataset
                property_ = PROPERTY_DATASET[dc.property_](
                    self.loss_function.order['property'], structures)
                property_npz = tagged_xyz.with_name(f'{dc.property_}.npz')
                if property_npz.exists() and load_descriptor:
                    property_.load(property_npz,
                                   verbose=self.verbose,
                                   remake=dc.remake)
                else:
                    property_.make(verbose=self.verbose)
                    property_.save(property_npz, verbose=self.verbose)

                # construct HDNNP dataset from descriptor & property datasets
                dataset = HDNNPDataset(descriptor, property_)
                dataset.construct(all_elements=tc.elements,
                                  preprocesses=preprocesses,
                                  shuffle=True,
                                  verbose=self.verbose)

                ##Save preprocessed dataset
                dtset_npz = tagged_xyz.with_name(f'preprocd_dataset.npz')
                np.savez(dtset_npz, dataset=dataset)
                ##End of saving preprocessed dataset

                dataset.scatter()
                datasets.append(dataset)
                dc.n_sample += dataset.total_size
                mc.n_input = dataset.n_input
                mc.n_output = dataset.n_label

        for preprocess in preprocesses:
            preprocess.save(preprocess_dir / f'{preprocess.name}.npz',
                            verbose=self.verbose)

        return datasets

    #use preprocess defined by training dataset
    #same procedure as prediction case
    def construct_test_datasets(self, tag_xyz_map, load_descriptor):
        dc = self.dataset_config
        mc = self.model_config
        tc = self.training_config
        preprocess_dir = tc.out_dir / 'preprocess'
        preprocesses = []
        for (name, args, kwargs) in dc.preprocesses:
            preprocess = PREPROCESS[name](*args, **kwargs)
            preprocess.load(preprocess_dir / f'{preprocess.name}.npz',
                            verbose=self.verbose)
            preprocesses.append(preprocess)

        datasets = []
        for pattern in tc.tags:
            for tag in fnmatch.filter(tag_xyz_map, pattern):
                if self.verbose:
                    pprint(f'Construct sub test dataset tagged as "{tag}"')
                tagged_xyz = tag_xyz_map.pop(tag)
                structures = AtomicStructure.read_xyz(tagged_xyz)

                # prepare descriptor dataset
                descriptor = DESCRIPTOR_DATASET[dc.descriptor](
                    self.loss_function.order['descriptor'], structures,
                    **dc.parameters)
                descriptor_npz = tagged_xyz.with_name(
                    f'{dc.descriptor}-test.npz')
                if load_descriptor:
                    descriptor.load(descriptor_npz,
                                    verbose=self.verbose,
                                    remake=dc.remake)
                else:
                    descriptor.make(verbose=self.verbose)
                    descriptor.save(descriptor_npz, verbose=self.verbose)

                # prepare property dataset
                property_ = PROPERTY_DATASET[dc.property_](
                    self.loss_function.order['property'], structures)
                property_npz = tagged_xyz.with_name(f'{dc.property_}-test.npz')
                if property_npz.exists() and load_descriptor:
                    property_.load(property_npz,
                                   verbose=self.verbose,
                                   remake=dc.remake)
                else:
                    property_.make(verbose=self.verbose)
                    property_.save(property_npz, verbose=self.verbose)

                # construct test dataset from descriptor & property datasets
                dataset = HDNNPDataset(descriptor, property_)
                dataset.construct(all_elements=tc.elements,
                                  preprocesses=preprocesses,
                                  shuffle=False,
                                  verbose=self.verbose)
                dataset.scatter()
                datasets.append(dataset)
                dc.n_sample += dataset.total_size
                mc.n_input = dataset.n_input
                mc.n_output = dataset.n_label

        return datasets

    def train(self, dataset, comm=None):
        mc = self.model_config
        tc = self.training_config
        if comm is None:
            comm = chainermn.create_communicator('naive', MPI.comm)
        result = {'training_time': 0.0, 'observation': []}

        # model and optimizer
        master_nnp = MasterNNP(tc.elements, mc.n_input, mc.hidden_layers,
                               mc.n_output, mc.initializer)
        master_opt = chainer.optimizers.Adam(tc.init_lr)
        master_opt = chainermn.create_multi_node_optimizer(master_opt, comm)
        master_opt.setup(master_nnp)
        master_opt.add_hook(chainer.optimizer_hooks.Lasso(tc.l1_norm))
        master_opt.add_hook(chainer.optimizer_hooks.WeightDecay(tc.l2_norm))

        for training, test in dataset:
            tag = training.tag
            properties = training.property.properties

            # iterators
            train_iter = chainer.iterators.SerialIterator(training,
                                                          tc.batch_size //
                                                          MPI.size,
                                                          repeat=True,
                                                          shuffle=True)
            test_iter = chainer.iterators.SerialIterator(test,
                                                         tc.batch_size //
                                                         MPI.size,
                                                         repeat=False,
                                                         shuffle=False)

            # model
            hdnnp = HighDimensionalNNP(training.elemental_composition,
                                       mc.n_input, mc.hidden_layers,
                                       mc.n_output, mc.initializer)
            hdnnp.sync_param_with(master_nnp)
            main_opt = chainer.Optimizer()
            main_opt = chainermn.create_multi_node_optimizer(main_opt, comm)
            main_opt.setup(hdnnp)

            # loss function
            _, kwargs = tc.loss_function
            loss_function = self.loss_function(hdnnp, properties, **kwargs)
            observation_keys = loss_function.observation_keys

            # triggers
            interval = (tc.interval, 'epoch')
            stop_trigger = EarlyStoppingTrigger(
                check_trigger=interval,
                monitor=f'val/main/{observation_keys[-1]}',
                patients=tc.patients,
                mode='min',
                verbose=self.verbose,
                max_trigger=(tc.epoch, 'epoch'))

            # updater and trainer
            updater = Updater(train_iter, {
                'main': main_opt,
                'master': master_opt
            },
                              loss_func=loss_function.eval)
            out_dir = tc.out_dir / tag
            trainer = chainer.training.Trainer(updater, stop_trigger, out_dir)

            # extensions
            trainer.extend(
                ext.ExponentialShift('alpha',
                                     1 - tc.lr_decay,
                                     target=tc.final_lr,
                                     optimizer=master_opt))
            evaluator = chainermn.create_multi_node_evaluator(
                ext.Evaluator(test_iter, hdnnp, eval_func=loss_function.eval),
                comm)
            trainer.extend(evaluator, name='val')
            if tc.scatter_plot:
                trainer.extend(ScatterPlot(test, hdnnp, comm),
                               trigger=interval)
            if MPI.rank == 0:
                if tc.log_report:
                    trainer.extend(ext.LogReport(log_name='training.log'))
                if tc.print_report:
                    trainer.extend(
                        ext.PrintReport(
                            ['epoch', 'iteration'] +
                            [f'main/{key}' for key in observation_keys] +
                            [f'val/main/{key}' for key in observation_keys]))
                if tc.plot_report:
                    trainer.extend(
                        ext.PlotReport(
                            [f'main/{key}' for key in observation_keys],
                            x_key='epoch',
                            postprocess=set_log_scale,
                            file_name='training_set.png',
                            marker=None))
                    trainer.extend(
                        ext.PlotReport(
                            [f'val/main/{key}' for key in observation_keys],
                            x_key='epoch',
                            postprocess=set_log_scale,
                            file_name='validation_set.png',
                            marker=None))

            manager = Manager(tag, trainer, result, is_snapshot=True)
            if self.is_resume:
                manager.check_to_resume(self.resume_dir.name)
            if manager.allow_to_run:
                with manager:
                    trainer.run()

        if MPI.rank == 0:
            chainer.serializers.save_npz(tc.out_dir / 'master_nnp.npz',
                                         master_nnp)

        return result

    def dump_result(self, result):
        yaml.add_representer(pathlib.PosixPath, pyyaml_path_representer)
        result_file = self.training_config.out_dir / 'training_result.yaml'
        with result_file.open('w') as f:
            yaml.dump(
                {
                    'dataset': self.dataset_config.dump(),
                    'model': self.model_config.dump(),
                    'training': self.training_config.dump(),
                },
                f,
                default_flow_style=False)
            yaml.dump({
                'result': result,
            }, f, default_flow_style=False)