Exemplo n.º 1
0
def test_reimport_calibrate_write_read(temp_file, region1, region2, peak,
                                       calfactor1, calfactor2, calfactor3):
    """
    Write/Read fit and change calibration in between
    Fit should appear at the new calibrated position
    """
    test_store_fit(region1, region2, peak, calfactor1, calfactor2)
    spectra.ActivateFit(None)

    fit = list(spectra.Get("0").dict.items())[0][1]
    markers_initial = get_markers(fit)
    integral_initial = fit.ExtractIntegralParams()[0][0]

    fitxml.WriteXML(spectra.Get("0").ID, temp_file)
    spectra.Get("0").Clear()
    spectra.ApplyCalibration(0, [0, calfactor3])
    fitxml.ReadXML(spectra.Get("0").ID, temp_file)

    fit = list(spectra.Get("0").dict.items())[0][1]
    markers_final = get_markers(fit)
    integral_final = fit.ExtractIntegralParams()[0][0]

    assert isclose(markers_initial[1],
                   markers_final[1] / calfactor3 * calfactor2)
    assert isclose(markers_initial[3],
                   markers_final[3] / calfactor3 * calfactor2)
    assert isclose(markers_initial[5],
                   markers_final[5] / calfactor3 * calfactor2)
    for key in ["pos", "width_cal"]:
        assert isclose(
            integral_initial[key].nominal_value,
            integral_final[key].nominal_value / calfactor3 * calfactor2)
Exemplo n.º 2
0
def fit_write_and_save(filename):
    spectra.ExecuteFit()
    spectra.StoreFit()
    spectra.ClearFit()

    out_original = list_fit()

    print('Saving fits to file %s' % filename)
    fitxml.WriteXML(spectra.Get("0").ID, filename)
    print('Deleting all fits')
    spectra.Get("0").Clear()
    print('Reading fits from file %s' % filename)
    fitxml.ReadXML(spectra.Get("0").ID, filename)

    assert out_original == list_fit()
Exemplo n.º 3
0
def test_write_read_xml(temp_file, region1, region2, peak, calfactor1,
                        calfactor2):
    """
    Write/read fit to/from xml
    Fit should appear at the same position as before
    """
    test_store_fit(region1, region2, peak, calfactor1, calfactor2)
    spectra.ActivateFit(None)

    out_original = list_fit()

    spectra.ClearFit()
    fitxml.WriteXML(spectra.Get("0").ID, temp_file)
    spectra.Get("0").Clear()
    fitxml.ReadXML(spectra.Get("0").ID, temp_file)

    assert out_original == list_fit()
Exemplo n.º 4
0
def test_backgroundRegions(
    model,
    nparams,
    step,
    nregions,
    settings,
    errormessage,
    bgparams,
    bg_volume,
    temp_file,
    test_spectrum,
):

    spec_interface.LoadSpectra(test_spectrum.filename)
    command = ["fit function background activate " + model]
    if settings != "":
        command.append(settings)
    for i in range(nregions):
        command.append(
            "fit marker background set %f"
            % ((step + test_spectrum.bg_regions[i][0]) * test_spectrum.nbins_per_step)
        )
        command.append(
            "fit marker background set %f"
            % ((step + test_spectrum.bg_regions[i][1]) * test_spectrum.nbins_per_step)
        )
    command.append(
        "fit marker region set %f"
        % (
            (step + 0.5) * test_spectrum.nbins_per_step
            - 3.0 * test_spectrum.peak_width * test_spectrum.nbins_per_step
        )
    )
    command.append(
        "fit marker region set %f"
        % (
            (step + 0.5) * test_spectrum.nbins_per_step
            + 3.0 * test_spectrum.peak_width * test_spectrum.nbins_per_step
        )
    )
    command.append(
        "fit marker peak set %f" % ((step + 0.5) * test_spectrum.nbins_per_step)
    )

    command.append("fit execute")
    command.append("fit store")
    for i in range(nregions):
        command.append("fit marker background delete %i" % (i))
    command.append("fit marker region delete 0")
    command.append("fit marker peak delete 0")
    f, ferr = hdtvcmd(*command)

    if WRITE_BATCHFILE:
        batchfile = os.path.join(
            os.path.curdir,
            "test",
            "share",
            model + "_" + str(nparams) + "_" + str(step) + "_background.hdtv",
        )
        bfile = open(batchfile, "w")
        bfile.write("spectrum get " + test_spectrum.filename + "\n")
        for c in command:
            bfile.write(c + "\n")
        bfile.close()

    if errormessage != "":
        hdtvcmd("fit delete 0", "spectrum delete 0")
        assert errormessage in ferr
    else:
        assert ferr == ""

        fitxml.WriteXML(spectra.Get("0").ID, temp_file)
        fitxml.ReadXML(spectra.Get("0").ID, temp_file, refit=True, interactive=False)
        hdtvcmd("fit delete 0", "spectrum delete 0")

        # Parse xml file manually and check correct output
        tree = ET.parse(temp_file)
        root = tree.getroot()

        # Check the number of fits
        fits = root.findall("fit")
        assert len(fits) == 1

        # Check the number and positions of background markers
        bgMarkers = fits[0].findall("bgMarker")
        assert len(bgMarkers) == nregions
        for i in range(len(bgMarkers)):
            assert isclose(
                float(bgMarkers[i].find("begin").find("cal").text),
                (step + test_spectrum.bg_regions[i][0]) * test_spectrum.nbins_per_step,
                abs_tol=BG_MARKER_TOLERANCE,
            )
            assert isclose(
                float(bgMarkers[i].find("end").find("cal").text),
                (step + test_spectrum.bg_regions[i][1]) * test_spectrum.nbins_per_step,
                abs_tol=BG_MARKER_TOLERANCE,
            )
        # Check the number (and values) of background parameters
        background = fits[0].find("background")
        assert background.get("backgroundModel") == model
        assert int(background.get("nparams")) == nparams

        # Check the background parameters
        if len(bgparams) > 0:
            params = background.findall("param")
            for i in range(len(params)):
                if i < len(bgparams):
                    assert isclose(
                        float(params[i].find("value").text),
                        bgparams[i],
                        abs_tol=N_SIGMA * float(params[i].find("error").text),
                    )

        # Check the fit result
        # All results will be compared
        assert isclose(
            float(fits[0].find("peak").find("cal").find("vol").find("value").text),
            test_spectrum.peak_volume,
            abs_tol=N_SIGMA
            * float(fits[0].find("peak").find("cal").find("vol").find("error").text),
        )
        assert isclose(
            float(fits[0].find("peak").find("cal").find("width").find("value").text),
            SIGMA_TO_FWHM * test_spectrum.peak_width * test_spectrum.nbins_per_step,
            abs_tol=N_SIGMA
            * float(fits[0].find("peak").find("cal").find("width").find("error").text),
        )

        # Check the integration result
        integrals = fits[0].findall("integral")
        assert len(integrals) == 3

        assert integrals[0].get("integraltype") == "tot"
        assert integrals[1].get("integraltype") == "bg"
        assert integrals[2].get("integraltype") == "sub"
        # Peak volume
        assert isclose(
            float(integrals[2].find("uncal").find("vol").find("value").text),
            test_spectrum.peak_volume,
            abs_tol=N_SIGMA
            * float(integrals[2].find("uncal").find("vol").find("error").text),
        )
        # Background volume
        if bg_volume > 0.0:
            assert isclose(
                float(integrals[1].find("uncal").find("vol").find("value").text),
                bg_volume,
                abs_tol=sqrt(bg_volume),
            )
        else:
            assert isclose(
                float(integrals[1].find("uncal").find("vol").find("value").text),
                test_spectrum.bg_per_bin
                * 6.0
                * test_spectrum.peak_width
                * test_spectrum.nbins_per_step,
                abs_tol=N_SIGMA
                * sqrt(
                    test_spectrum.bg_per_bin
                    * 6.0
                    * test_spectrum.peak_width
                    * test_spectrum.nbins_per_step
                ),
            )
Exemplo n.º 5
0
def test_old_xml(xmlfile):
    fitxml.ReadXML(spectra.Get("0").ID, xmlfile, refit=True, interactive=False)
    fit_interface.ListFits()
Exemplo n.º 6
0
def test_backgroundRegions(model, nparams, step, nregions, settings, errormessage, bgparams, bg_volume, temp_file, test_spectrum):

    spec_interface.LoadSpectra(test_spectrum.filename)
    command  = ['fit function background activate ' + model]
    if settings is not "":
        command.append(settings)
    for i in range(nregions):
        command.append('fit marker background set %f' % ((step+test_spectrum.bg_regions[i][0])*test_spectrum.nbins_per_step))
        command.append('fit marker background set %f' % ((step+test_spectrum.bg_regions[i][1])*test_spectrum.nbins_per_step))
    command.append('fit marker region set %f' % ((step+0.5)*test_spectrum.nbins_per_step - 3.*test_spectrum.peak_width*test_spectrum.nbins_per_step))
    command.append('fit marker region set %f' % ((step+0.5)*test_spectrum.nbins_per_step + 3.*test_spectrum.peak_width*test_spectrum.nbins_per_step))
    command.append('fit marker peak set %f' % ((step+0.5)*test_spectrum.nbins_per_step))

    command.append('fit execute')
    command.append('fit store')
    for i in range(nregions):
        command.append('fit marker background delete %i' % (i))
    command.append('fit marker region delete 0')
    command.append('fit marker peak delete 0')
    f, ferr = hdtvcmd(*command)

    if WRITE_BATCHFILE:
        batchfile = os.path.join(os.path.curdir, 'test', 'share', model + '_' + str(nparams) + '_' + str(step) + '_background.hdtv')
        bfile = open(batchfile, 'w')
        bfile.write('spectrum get '+ test_spectrum.filename + '\n')
        for c in command:
            bfile.write(c + '\n')
        bfile.close()

    if errormessage is not '':
        hdtvcmd('fit delete 0', 'spectrum delete 0')
        assert errormessage in ferr
    else:
        assert ferr == ''

        fitxml.WriteXML(spectra.Get("0").ID, temp_file)
        fitxml.ReadXML(spectra.Get("0").ID, temp_file, refit=True, interactive=False)
        hdtvcmd('fit delete 0', 'spectrum delete 0')

        # Parse xml file manually and check correct output
        tree = ET.parse(temp_file)
        root = tree.getroot()

        # Check the number of fits
        fits = root.findall('fit')
        assert len(fits) == 1

        # Check the number and positions of background markers
        bgMarkers = fits[0].findall('bgMarker')
        assert len(bgMarkers) == nregions
        for i in range(len(bgMarkers)):
            assert isclose(float(bgMarkers[i].find('begin').find('cal').text), (step+test_spectrum.bg_regions[i][0])*test_spectrum.nbins_per_step, abs_tol=BG_MARKER_TOLERANCE)
            assert isclose(float(bgMarkers[i].find('end').find('cal').text), (step+test_spectrum.bg_regions[i][1])*test_spectrum.nbins_per_step, abs_tol=BG_MARKER_TOLERANCE)
        # Check the number (and values) of background parameters
        background = fits[0].find('background')
        assert background.get('backgroundModel') == model
        assert int(background.get('nparams')) == nparams

        # Check the background parameters
        if len(bgparams) > 0:
            params = background.findall('param')
            for i in range(len(params)):
                if i < len(bgparams):
                    assert isclose(float(params[i].find('value').text), bgparams[i], abs_tol=N_SIGMA*float(params[i].find('error').text))

        # Check the fit result
        # All results will be compared 
        assert isclose(float(fits[0].find('peak').find('cal').find('vol').find('value').text), test_spectrum.peak_volume, abs_tol=N_SIGMA*float(fits[0].find('peak').find('cal').find('vol').find('error').text)) 
        assert isclose(float(fits[0].find('peak').find('cal').find('width').find('value').text), SIGMA_TO_FWHM*test_spectrum.peak_width*test_spectrum.nbins_per_step, abs_tol=N_SIGMA*float(fits[0].find('peak').find('cal').find('width').find('error').text)) 

        # Check the integration result
        integrals = fits[0].findall('integral')
        assert len(integrals) == 3

        assert integrals[0].get('integraltype') == 'tot'
        assert integrals[1].get('integraltype') == 'bg'
        assert integrals[2].get('integraltype') == 'sub'
        # Peak volume
        assert isclose(float(integrals[2].find('uncal').find('vol').find('value').text), test_spectrum.peak_volume, abs_tol=N_SIGMA*float(integrals[2].find('uncal').find('vol').find('error').text))
        # Background volume
        if bg_volume > 0.:
            assert  isclose(float(integrals[1].find('uncal').find('vol').find('value').text), bg_volume, abs_tol=sqrt(bg_volume))
        else:
            assert isclose(float(integrals[1].find('uncal').find('vol').find('value').text), test_spectrum.bg_per_bin*6.*test_spectrum.peak_width*test_spectrum.nbins_per_step, abs_tol=N_SIGMA*sqrt(test_spectrum.bg_per_bin*6.*test_spectrum.peak_width*test_spectrum.nbins_per_step))
Exemplo n.º 7
0
def test_old_xml(xmlfile):
    # Check whether hdtv recognizes the format of the XML file at all
    # by invoking the general ReadXML function.
    # Note that this does not ensure the correct reading of the XML file.
    fitxml.ReadXML(spectra.Get("0").ID, xmlfile, refit=True, interactive=False)
Exemplo n.º 8
0
def test_calbin(temp_file, test_spectrum):
    command = ['spectrum get ' + test_spectrum.filename]

    step = 2  # Use the third spectrum which has a constant background and Poissonian fluctuations
    # Fit the peak in step 2
    command.append('fit marker background set %f' %
                   ((step + test_spectrum.bg_regions[0][0]) *
                    test_spectrum.nbins_per_step))
    command.append('fit marker background set %f' %
                   ((step + test_spectrum.bg_regions[0][1]) *
                    test_spectrum.nbins_per_step))
    command.append('fit marker background set %f' %
                   ((step + test_spectrum.bg_regions[1][0]) *
                    test_spectrum.nbins_per_step))
    command.append('fit marker background set %f' %
                   ((step + test_spectrum.bg_regions[1][1]) *
                    test_spectrum.nbins_per_step))

    command.append(
        'fit marker region set %f' %
        ((step + 0.5) * test_spectrum.nbins_per_step -
         3. * test_spectrum.peak_width * test_spectrum.nbins_per_step))
    command.append(
        'fit marker region set %f' %
        ((step + 0.5) * test_spectrum.nbins_per_step +
         3. * test_spectrum.peak_width * test_spectrum.nbins_per_step))
    command.append('fit marker peak set %f' %
                   ((step + 0.5) * test_spectrum.nbins_per_step))

    command.append('fit execute')
    command.append('fit store')
    f, ferr = hdtvcmd(*command)

    if WRITE_BATCHFILE:
        batchfile = os.path.join(os.path.curdir, 'test', 'share',
                                 'calbin.hdtv')
        with open(batchfile, 'w') as bfile:
            for c in command:
                bfile.write(c + '\n')

        assert ferr == ''

    # Write the fit result to a temporary XML file
    fitxml.WriteXML(spectra.Get("0").ID, temp_file)
    fitxml.ReadXML(spectra.Get("0").ID,
                   temp_file,
                   refit=True,
                   interactive=False)

    # Parse XML file manually
    tree = ET.parse(temp_file)
    root = tree.getroot()

    # Check the number of fits
    fits = root.findall('fit')
    assert len(fits) == 1

    # Read out the main fitted peak properties (position, volume, width) and their uncertainties
    pos_value_init = float(
        fits[0].find('peak').find('cal').find('pos').find('value').text)
    pos_error_init = abs(
        float(fits[0].find('peak').find('cal').find('pos').find('error').text))
    vol_value_init = float(
        fits[0].find('peak').find('cal').find('vol').find('value').text)
    vol_error_init = abs(
        float(fits[0].find('peak').find('cal').find('vol').find('error').text))
    width_value_init = float(
        fits[0].find('peak').find('cal').find('width').find('value').text)
    width_error_init = abs(
        float(
            fits[0].find('peak').find('cal').find('width').find('error').text))

    # Calbin the spectrum with standard settings, read in the fitted value again and check whether they have changed
    command = ['spectrum calbin 0 -s 1']
    command.append('fit execute')
    command.append('fit store')
    f, ferr = hdtvcmd(*command)
    assert ferr == ''

    if WRITE_BATCHFILE:
        batchfile = os.path.join(os.path.curdir, 'test', 'share',
                                 'calbin.hdtv')
        with open(batchfile, 'a') as bfile:
            for c in command:
                bfile.write(c + '\n')

        assert ferr == ''

    fitxml.WriteXML(spectra.Get("0").ID, temp_file)
    fitxml.ReadXML(spectra.Get("0").ID,
                   temp_file,
                   refit=False,
                   interactive=False)

    tree = ET.parse(temp_file)
    root = tree.getroot()

    fits = root.findall('fit')
    # It is a little bit unsatisfactory to accumulate the fits multiple times in temp_file, but I found no way to erase the content of temp_file
    # open(temp_file, 'w').close() wouldn't work
    assert len(fits) == 3

    pos_value_1 = float(
        fits[2].find('peak').find('cal').find('pos').find('value').text)
    pos_error_1 = abs(
        float(fits[2].find('peak').find('cal').find('pos').find('error').text))
    vol_value_1 = float(
        fits[2].find('peak').find('cal').find('vol').find('value').text)
    vol_error_1 = abs(
        float(fits[2].find('peak').find('cal').find('vol').find('error').text))
    width_value_1 = float(
        fits[2].find('peak').find('cal').find('width').find('value').text)
    width_error_1 = abs(
        float(
            fits[2].find('peak').find('cal').find('width').find('error').text))

    # For the fit of the position, allow it to deviate by N_SIGMA times the combined standard deviations of the fitted positions PLUS the width of a single bin.
    assert isclose(
        pos_value_init - pos_value_1,
        0.,
        abs_tol=N_SIGMA *
        sqrt(pos_error_init * pos_error_init + pos_error_1 * pos_error_1) + 1.)
    assert isclose(
        vol_value_init - vol_value_1,
        0.,
        abs_tol=N_SIGMA *
        sqrt(vol_error_init * vol_error_init + vol_error_1 * vol_error_1))
    assert isclose(width_value_init - width_value_1,
                   0.,
                   abs_tol=N_SIGMA * sqrt(width_error_init * width_error_init +
                                          width_error_1 * width_error_1))

    # Calbin the spectrum with a factor of 2, read in the fitted value again and check whether they have changed
    command = ['spectrum calbin 0 -b 2 -s 0']
    command.append('fit execute')
    command.append('fit store')
    f, ferr = hdtvcmd(*command)
    assert ferr == ''

    if WRITE_BATCHFILE:
        batchfile = os.path.join(os.path.curdir, 'test', 'share',
                                 'calbin.hdtv')
        with open(batchfile, 'a') as bfile:
            for c in command:
                bfile.write(c + '\n')

        assert ferr == ''

    fitxml.WriteXML(spectra.Get("0").ID, temp_file)
    fitxml.ReadXML(spectra.Get("0").ID,
                   temp_file,
                   refit=False,
                   interactive=False)

    tree = ET.parse(temp_file)
    root = tree.getroot()

    fits = root.findall('fit')
    assert len(fits) == 7

    pos_value_2 = float(
        fits[6].find('peak').find('cal').find('pos').find('value').text)
    pos_error_2 = abs(
        float(fits[6].find('peak').find('cal').find('pos').find('error').text))
    vol_value_2 = float(
        fits[6].find('peak').find('cal').find('vol').find('value').text)
    vol_error_2 = abs(
        float(fits[6].find('peak').find('cal').find('vol').find('error').text))
    width_value_2 = float(
        fits[6].find('peak').find('cal').find('width').find('value').text)
    width_error_2 = abs(
        float(
            fits[6].find('peak').find('cal').find('width').find('error').text))

    assert isclose(
        pos_value_init - pos_value_2,
        0.,
        abs_tol=N_SIGMA *
        sqrt(pos_error_init * pos_error_init + pos_error_2 * pos_error_2) + 2.)
    assert isclose(
        vol_value_init - vol_value_2,
        0.,
        abs_tol=N_SIGMA *
        sqrt(vol_error_init * vol_error_init + vol_error_2 * vol_error_2))
    assert isclose(width_value_init - width_value_2,
                   0.,
                   abs_tol=N_SIGMA * sqrt(width_error_init * width_error_init +
                                          width_error_2 * width_error_2))

    assert isclose(pos_error_init, pos_error_2, rel_tol=0.2)
    assert isclose(vol_error_init, vol_error_2, rel_tol=0.2)
    assert isclose(pos_error_init, pos_error_2, rel_tol=0.2)