Exemplo n.º 1
0
    def __init__(self, options):
        self.projPath = options.projPath + '/'
        self.regions = options.regions
        self.name = options.name
        self.toyDir = 'toy' + options.toynum + '_' + self.name + '_plots/'
        self.toynum = options.toynum
        if not os.path.isdir(self.projPath + '/' + self.toyDir):
            os.mkdir(self.projPath + '/' + self.toyDir)

        if os.path.isfile(self.projPath + '/fitDiagnostics' + self.name +
                          '.root'):
            self.fd_file = TFile.Open(self.projPath + '/fitDiagnostics' +
                                      self.name + '.root')
        else:
            self.fd_file = False
        if options.workspacefile == '':
            self.ws_file = TFile.Open(self.projPath + '/higgsCombine' +
                                      self.name + '.GoodnessOfFit.mH120.' +
                                      options.seed + '.root')
        else:
            self.ws_file = TFile.Open(self.projPath + '/' +
                                      options.workspacefile)
        if options.toyfile == '': self.toy_file = self.ws_file
        else: self.toy_file = TFile.Open(self.projPath + '/' + options.toyfile)
        # self.ws_file.ls()
        self.ws = self.ws_file.Get('w')
        # self.ws.Print()
        # self.toy_w = self.ws.Clone('toy_w')
        self.toy = self.toy_file.Get('toys/toy_' + options.toynum)
        getattr(self.ws, 'import')(self.toy)
        self.ws.writeToFile(
            self.projPath + '/' + self.toyDir + '/toy_workspace.root', True)

        if not options.skipSamples:
            with header.cd(self.projPath):
                header.executeCmd(
                    'PostFit2DShapesFromWorkspace -w ' + self.toyDir +
                    '/toy_workspace.root --dataset model_sData -o ' +
                    self.toyDir + 'postfitshapes_s.root -f fitDiagnostics' +
                    self.name +
                    '.root:fit_s --samples 50 --postfit --sampling --print')
        with header.cd(self.projPath):
            # diffnuis_cmd = 'python $CMSSW_BASE/src/HiggsAnalysis/CombinedLimit/test/diffNuisances.py fitDiagnostics'+self.name+'.root --abs -g toy'+options.toynum+'_'+self.name+'_plots/nuisance_pulls.root'
            # header.executeCmd(diffnuis_cmd)
            self.plotNuisances()

        self.post_file = TFile.Open(self.projPath + self.toyDir +
                                    'postfitshapes_s.root')
        for r in self.regions.split(','):
            if not os.path.isdir(self.projPath + '/' + self.toyDir + r):
                os.mkdir(self.projPath + '/' + self.toyDir + r)
            if os.path.isfile(self.projPath + '/saveOut.p'):
                pickleFile = pickle.load(
                    open(self.projPath + '/saveOut.p', 'rb'))
            else:
                pickleFile = pickle.load(
                    open(self.projPath + r + '/saveOut.p', 'rb'))
            self.plotFitResults(r, pickleFile)
Exemplo n.º 2
0
if options.toys == '':
    raise ValueError(
        'Toy option empty. Scanning data fit not currently supported.')

if os.path.exists(options.toysFile):
    toysFile = options.toysFile
elif os.path.exists(projDir + '/' + options.toysFile):
    toysFile = projDir + '/' + options.toysFile
else:
    raise Exception('Cannot find file %s' % options.toysFile)

with header.cd(projDir):
    if not options.skipScan:
        header.executeCmd(
            'combine -M MultiDimFit -d card_%s.txt --algo grid -P %s --floatOtherPOIs=0 --setParameterRanges %s=%s,%s --cminDefaultMinimizerStrategy 0 --saveNLL -n %s -t %s --toysFile %s'
            % (tag, options.parameter, options.parameter, rrange[0], rrange[1],
               runname, options.toys, options.toysFile))

    header.executeCmd('mkdir %s_plots/' % runname)
    f_out = ROOT.TFile.Open('%s_plots/all.root' % runname, 'RECREATE')
    f = ROOT.TFile.Open('higgsCombine%s.MultiDimFit.mH120.123456.root' %
                        runname)
    for i in range(1, int(options.toys) + 1):
        TLimit = f.Get('limit')

        r = []
        nll = []
        for ientry in range(1, TLimit.GetEntries()):
            TLimit.GetEntry(ientry)
            if TLimit.deltaNLL * 2 != 0 and TLimit.iToy == i:
                nll.append(2 * TLimit.deltaNLL)
Exemplo n.º 3
0
    def __init__ (self,fitDict,name,dummy_TH2=None,tag=''):
        self.fitDict = fitDict
        self.projDir = name+'/'+tag
        self.fitType = self.fitType()
        self.name = name
        self.rpfVars = {}
        self.binVars = {} # RooFormulaVars for each bin for later evaluation
        self.allVars = []

        # Initialize rpfVars according to 
        if self.fitType == 'splitPoly':
            # Do some quick checks to make sure these are formatted correctly
            header.checkFitForm(self.fitDict['XPFORM'],self.fitDict['YPFORM'])

            nxparams = max([int(param[1:]) for param in self.fitDict.keys() if param.find('X') != -1 and param != 'XPFORM'])
            nyparams = max([int(param[1:]) for param in self.fitDict.keys() if param.find('Y') != -1 and param != 'YPFORM'])
            print 'Total number of x fit parameters is ' + str(nxparams)
            print 'Total number of y fit parameters is ' + str(nyparams)

            # Make and store RRVs for each param
            for this_var in {'X':nxparams, 'Y':nyparams}.keys():
                nparams = {'X':nxparams, 'Y':nyparams}[this_var]
                for ip in range(1,nparams+1):
                    input_param_vals = self.fitDict[this_var+str(ip)]
                    this_nom = input_param_vals['NOMINAL']

                    varname = self.fitType+this_var+'_'+str(ip)+'_'+self.name

                    # Set ranges if they're defined
                    if 'MIN' in input_param_vals.keys() and 'MAX' in input_param_vals.keys():
                        this_min = input_param_vals['MIN']
                        this_max = input_param_vals['MAX']
                        self.rpfVars[varname] = RooRealVar(varname,varname,this_nom,this_min,this_max)

                        if 'ERROR_UP' in input_param_vals.keys() and 'ERROR_DOWN' in input_param_vals.keys():
                            self.rpfVars[varname].setAsymError(input_param_vals['ERROR_DOWN'],input_param_vals['ERROR_UP'])
                        elif 'ERROR' in input_param_vals.keys():
                            self.rpfVars[varname].setError(input_param_vals['ERROR'])

                    else:
                        input_break = raw_input('WARNING: Upper and lower bounds on global fit parameter ' +this_var+str(ip) + ' not defined. Please type "N" if you would like to quit or enter if you would like to treat the parameter as constant')
                        if input_break == 'N':
                            quit()
                        else:
                            self.rpfVars[varname] = RooConstVar(varname,varname,this_nom)

                    self.allVars.append(self.rpfVars[varname])

        elif self.fitType == 'fullPoly':
            # Polynomial Order
            polXO = 0
            polYO = 0
            for param_name in [key for key in self.fitDict.keys() if key != 'HELP' and key != 'PFORM']:
                # Assuming poly order is a single digit (pretty reasonable I think...)
                tempXorder = int(param_name[param_name.find('X')+1])
                tempYorder = int(param_name[param_name.find('Y')+1])
                if tempXorder > polXO:
                    polXO = tempXorder
                if tempYorder > polYO:
                    polYO = tempYorder

            self.polXO = polXO
            self.polYO = polYO

            for yi in range(polYO+1):
                for xi in range(polXO+1):

                    input_param_vals = self.fitDict['X'+str(xi)+'Y'+str(yi)]
                    this_nom = input_param_vals['NOMINAL']
                    
                    varname = self.fitType+'X'+str(xi)+'Y'+str(yi)+'_'+self.name

                    if 'MIN' in input_param_vals.keys() and 'MAX' in input_param_vals.keys():
                        this_min = input_param_vals['MIN']
                        this_max = input_param_vals['MAX']
                        self.rpfVars[varname] = RooRealVar(varname,varname,this_nom,this_min,this_max)

                        if 'ERROR_UP' in input_param_vals.keys() and 'ERROR_DOWN' in input_param_vals.keys():
                            self.rpfVars[varname].setAsymError(input_param_vals['ERROR_DOWN'],input_param_vals['ERROR_UP'])
                        elif 'ERROR' in input_param_vals.keys():
                            self.rpfVars[varname].setError(input_param_vals['ERROR'])

                    else:
                        input_break = raw_input('WARNING: Upper and lower bounds on fit parameter ' + 'x'+str(xi)+'y'+str(yi) + ' not defined. Please type "N" if you would like to quit or enter if you would like to treat the parameter as constant')
                        if input_break == 'N':
                            quit()
                        else:
                            self.rpfVars[varname] = RooConstVar(varname,varname,this_nom)
                    self.allVars.append(self.rpfVars[varname])

        elif self.fitType == 'generic':
            for c in sorted(self.fitDict.keys()):
                input_param_vals = self.fitDict[c]
                if c.isdigit():
                    this_nom = input_param_vals['NOMINAL']
                    if 'MIN' in input_param_vals.keys() and 'MAX' in input_param_vals.keys():
                        this_min = input_param_vals['MIN']
                        this_max = input_param_vals['MAX']
                        varname = self.fitType+c+'_'+self.name
                        self.rpfVars[varname] = RooRealVar(varname, varname, this_nom, this_min, this_max)

                        if 'ERROR_UP' in input_param_vals.keys() and 'ERROR_DOWN' in input_param_vals.keys():
                            self.rpfVars[varname].setAsymError(input_param_vals['ERROR_DOWN'],input_param_vals['ERROR_UP'])
                        elif 'ERROR' in self.fitDict[c].keys():
                            self.rpfVars[varname].setError(input_param_vals['ERROR'])

                    else:
                        input_break = raw_input('WARNING: Upper and lower bounds on fit parameter ' + c + ' not defined. Please type "N" if you would like to quit or enter if you would like to treat the parameter as constant')
                        if input_break == 'N':
                            quit()
                        else:
                            self.rpfVars[varname] = RooConstVar(varname,varname,this_nom)
                    self.allVars.append(self.rpfVars[varname])

            
        elif self.fitType == 'cheb':
            # Make a dummy TH2 for binning to be used by the chebyshevBasis class
            self.chebBasis = chebyshevBasis(name,'chebBasis',self.fitDict['CHEBYSHEV']['XORDER'],self.fitDict['CHEBYSHEV']['YORDER'],dummy_TH2)
            if os.path.isdir(self.projDir+'/basis_plots'): header.executeCmd('rm -rf %s/basis_plots'%self.projDir)
            header.executeCmd('mkdir %s/basis_plots'%self.projDir)

            self.chebBasis.drawBasis(self.projDir+'/basis_plots')

            # This class handles the RRV management itself so we just keep track of the class instance
            cheb_coeffs = self.chebBasis.getCoeffs()
            i = 0
            while cheb_coeffs.at(i):
                c = cheb_coeffs.at(i)
                self.rpfVars[c.GetName()] = c
                i += 1
Exemplo n.º 4
0
    if len(masked_regions) > 0:
        freeze_r_string = " --fixedSignalStrength 0"
    else:
        freeze_r_string = ''

    if options.freezeFail:
        freeze_string = ' --freezeParameters "var{Fail_.*}"'
    else:
        freeze_string = ''

    # Make a prefit workspace from the data card
    if options.workspace == '' and not options.post:
        workspace_name = 'stats_workspace.root'
        t2w_cmd = 'text2workspace.py --channel-masks -b card_' + card_tag + '.txt -o ' + workspace_name
        # if not (os.path.exists(workspace_name)):# and options.ftest == 'pvalue'):
        header.executeCmd(t2w_cmd, options.dryrun)
    else:
        workspace_name = options.workspace

    # Setup a random seed
    seed = random.randint(100000, 999999)
    if options.seed != '': seed = options.seed

    # Setup run naming
    if options.gof:
        expectSignal = '0'
        run_name = 'gof'
        gen_name = run_name
    elif options.signalInjection != '':
        expectSignal = options.signalInjection
        run_name = 'signalInjection' + expectSignal.replace('.', 'p')
Exemplo n.º 5
0
        blind_string += m + '=1,'
    blind_string = blind_string[:-1] + ' '
    blind_string = blind_string + blind_string.replace(
        'setParametersForFit', 'setParametersForEval')  #.replace('=1','=0')

    if len(masked_regions) > 0:
        freeze_r_string = " --fixedSignalStrength 0"
    else:
        freeze_r_string = ''

    # Make a prefit workspace from the data card
    if options.workspace == '' and not options.post:
        workspace_name = 'stats_workspace.root'
        t2w_cmd = 'text2workspace.py --channel-masks -b card_' + card_tag + '.txt -o ' + workspace_name
        if not (os.path.exists(workspace_name) and options.ftest == 'pvalue'):
            header.executeCmd(t2w_cmd, options.dryrun)
    else:
        workspace_name = options.workspace

    # Setup a random seed
    seed = random.randint(100000, 999999)
    if options.seed != '': seed = options.seed

    # Setup run naming
    if options.gof:
        expectSignal = '0'
        run_name = 'gof'
        gen_name = run_name
    elif options.signalInjection != '':
        expectSignal = options.signalInjection
        run_name = 'signalInjection' + expectSignal.replace('.', 'p')
Exemplo n.º 6
0
else: card_tag = projDir.split('/')[-2]

if taskName == '':
    raise NameError('ERROR in project directory name (where your workspace and data card lives). Did you accidentally provide a leading slash? (ie /projDir/) Quitting...')
if options.condor:
    print 'Condor task name = '+taskName

if not os.path.isdir(projDir): 
    raise TypeError(projDir +' is not a directory. Quitting...')

# By default, this calculates the impacts for every RooRealVar in your workspace.
# That would mean EVERY FAIL BIN would need to be scanned (100s or even 1000s of parameters).
# So instead, we'll be a list of only the nuisance parameters and ask to just fit those

if options.condor: 
    header.executeCmd('tar --exclude="*.tgz" --exclude="*.std*" --exclude="run_combine*.sh" --exclude="*GoodnessOfFit*" --exclude="*.png" --exclude="*.pdf" --exclude="*.log" -czvf tarball.tgz '+projDir)
    header.executeCmd('mv tarball.tgz '+projDir)
print 'cd '+projDir
with header.cd(projDir):
    systs = SystematicParser('card_'+card_tag+'.txt')
    impactNuisanceString = '--named '
    for s in systs:
        impactNuisanceString+=s+','
    impactNuisanceString = impactNuisanceString[:-1]# Cut off the trailing comma

    if not options.post:
        # Remove old runs if they exist
        header.executeCmd('rm *_paramFit_*.root *_initialFit_*.root')
        # Build a post-fit workspace
        #header.executeCmd('text2workspace.py -b card_'+card_tag+'.txt -o impactworkspace.root')
        header.setSnapshot()
Exemplo n.º 7
0
            blind_string = blind_string + blind_string.replace(
                'setParametersForFit', 'setParametersForEval')

            seed = random.randint(100000, 999999)
            commands.append(
                'combine -M GoodnessOfFit card_' + card_tag +
                '.txt --text2workspace "--channel-masks" -m 120 --algo=saturated '
                + blind_string)
            commands.append(
                'combine -M GoodnessOfFit card_' + card_tag +
                '.txt --text2workspace "--channel-masks" -m 120 --algo=saturated '
                + blind_string + ' -t ' + options.toys + ' -s ' + str(seed))

            # Run commands
            for c in commands:
                header.executeCmd(c, options.dryrun)

        # Now to analyze the output

        # Get observation
        gofOutput = TFile.Open('higgsCombineTest.GoodnessOfFit.mH120.root')
        gofLimitTree = gofOutput.Get('limit')
        gofLimitTree.GetEntry(0)
        gofLimit = gofLimitTree.limit

        # Get toys
        toyOutput = TFile.Open('higgsCombineTest.GoodnessOfFit.mH120.' +
                               str(seed) + '.root')
        toyLimitTree = toyOutput.Get('limit')
        toyLimitTree.Draw('limit>>hlimit')
        toyLimits = gDirectory.Get('hlimit')
Exemplo n.º 8
0
with header.cd(projDir):
    twoDAlphaConfig = header.openJSON('rerunConfig.json')
    impactNuisanceString = '--named '
    for s in twoDAlphaConfig['SYSTEMATIC'].keys():
        if s != 'HELP':
            impactNuisanceString += s + ','
    # Cut off the trailing comma
    impactNuisanceString = impactNuisanceString[:-1]

    commands = []

    if not options.post:
        # Remove old runs if they exist
        # print 'rm *_paramFit_*.root *_initialFit_*.root'
        # subprocess.call(['rm *_paramFit_*.root *_initialFit_*.root'],shell=True)
        header.executeCmd('text2workspace.py -b card_' + card_tag +
                          '.txt -o impactworkspace.root')
        initialfit_cmd = 'combineTool.py -M Impacts -n ' + taskName + ' -d impactworkspace.root --doInitialFit --robustFit 1 -m 120 ' + impactNuisanceString
        header.executeCmd(initialfit_cmd)

        if options.crab:
            # Need to write a custom crab config for the storage site
            crabConfig = open('custom_crab.py', 'w')
            crabConfig.write('def custom_crab(config):')
            print '>> Customising the crab config'
            crabConfig.write("    config.Site.storageSite = '" +
                             options.storage + "'")
            crabConfig.close()

            print 'Executing dry-run of crab jobs'
            impact_cmd = 'combineTool.py -M Impacts -n ' + taskName + ' -d impactworkspace.root --robustFit 1 --doFits -m 120 --job-mode crab3 --task-name Impacts' + taskName + ' --custom-crab custom_crab.py ' + impactNuisanceString
            subprocess.call([impact_cmd + ' --dry-run'], shell=True)