def view_segmentations(version, raw_scale, seg_names=[], seg_scales=[], bb=np.s_[:]):
    folder = os.path.join(ROOT, version, 'images', 'local')
    raw_file = os.path.join(folder, 'sbem-6dpf-1-whole-raw.xml')
    raw_file = get_data_path(raw_file, return_absolute_path=True)
    raw_key = get_key(False, time_point=0, setup_id=0, scale=raw_scale)

    with z5py.File(raw_file, 'r') as f:
        ds = f[raw_key]
        ds.n_threads = 16
        raw = ds[bb]
        ref_shape = raw.shape

    data = [to_source(raw, name='raw')]

    for seg_name, seg_scale in zip(seg_names, seg_scales):
        seg_file = os.path.join(folder, seg_name + '.xml')
        seg_file = get_data_path(seg_file, return_absolute_path=True)
        seg_key = get_key(False, time_point=0, setup_id=0, scale=seg_scale)
        with z5py.File(seg_file, 'r') as f:
            ds = f[seg_key]
            ds.n_threads = 16
            seg = ds[bb].astype('uint32')
            if seg.shape != ref_shape:
                # FIXME this will fail with bounding box
                print("Resize", ref_shape)
                seg = ResizeWrapper(to_source(seg, name=seg_name), ref_shape)
        data.append(to_source(seg, name=seg_name))

    view(*data)
Exemplo n.º 2
0
def example():
    path = '/home/pape/Work/data/ilastik/mulastik/data/data.h5'
    with h5py.File(path) as f:
        raw = f['raw']
        pred = f['prediction']
        pred = to_source(pred, multichannel=True)
        view(raw, pred)
Exemplo n.º 3
0
def example():
    path = '/home/pape/Work/data/cremi/example/sampleA.n5'
    with z5py.File(path) as f:
        raw = to_source(f['volumes/raw/s1'], scale=(1, 2, 2))

        seg = f['volumes/segmentation/groundtruth']
        seg.n_threads = 8

    view(raw, seg)
Exemplo n.º 4
0
def example(split_channels=False):
    """ Split channel toggles between old (False) and new (True) napari channel behaviour.
    """
    path = '/home/pape/Work/data/ilastik/mulastik/data/data.h5'
    with h5py.File(path) as f:
        raw = f['raw']
        pred = f['prediction']
        pred = to_source(pred, channel_axis=0, split_channels=split_channels)
        view(raw, pred)
def _show_inputs(inputs, scale_factors):
    from heimdall import view, to_source
    from vigra.sampling import resize
    raw0 = inputs[0]
    shape = raw0.shape
    data = [to_source(raw0, name='scale0')]

    for scale, (inp, scale_factor) in enumerate(zip(inputs[1:], scale_factors[1:]), 1):
        exp_shape = [int(sh / sf) for sh, sf in zip(shape, scale_factor)]
        act_shape = inp.shape

        halo = [(ash - esh) // 2 for ash, esh in zip(act_shape, exp_shape)]
        bb = tuple(slice(ha, sh - ha) for ha, sh in zip(halo, act_shape))

        d = inp[bb]
        d = resize(d.astype('float32'), shape=shape)
        data.append(to_source(d, name='scale%i' % scale))

    view(*data)
Exemplo n.º 6
0
def example():
    path = '/home/pape/Work/data/cremi/example/sampleA.n5'
    f = z5py.File(path)

    # roi and factory
    roi_start = [25, 256, 256]
    roi_stop = [100, 768, 768]
    factory = partial(roi_wrapper_pyramid_factory,
                      roi_start=roi_start,
                      roi_stop=roi_stop)

    # raw pyramid source
    raw = f['volumes/raw']
    raw_source = to_source(raw, wrapper_factory=factory, name='raw')

    # label source
    labels = f['volumes/segmentation/groundtruth']
    label_source = RoiWrapper(to_source(labels, name='labels'), roi_start,
                              roi_stop)

    view(raw_source, label_source)
def check_exported(with_seg=False, with_boundaries=False, scale=3):
    from heimdall import view, to_source
    from elf.wrapper.resized_volume import ResizedVolume

    path = '/g/arendt/EM_6dpf_segmentation/platy-browser-data/data/rawdata/sbem-6dpf-1-whole-raw.n5'
    key = 'setup0/timepoint0/s%i' % (scale + 1, )

    f = z5py.File(path, 'r')
    ds = f[key]
    ds.n_threads = 8
    raw = ds[:]
    shape = raw.shape
    data = [to_source(raw, name='raw')]

    path = './data.n5'
    key = 'volumes/segmentation2/s%i' % scale
    f = z5py.File(path, 'r')

    if with_seg:
        ds = f[key]
        ds.n_threads = 8
        seg = ds[:].astype('uint32')
        data.append(to_source(seg, name='segmentation'))

    key = 'volumes/clustering'
    ds = f[key]
    ds.n_threads = 8
    clustered = ResizedVolume(ds[:], shape=shape)[:]
    data.append(to_source(clustered, name='clustered'))

    path = '/g/arendt/EM_6dpf_segmentation/corrections_and_proofreading/data.n5'
    key = 'boundaries/s%i' % scale
    f = z5py.File(path, 'r')
    if with_boundaries:
        ds = f[key]
        ds.n_threads = 8
        bd = ds[:]
        data = to_source(bd, name='boundaries')

    view(*data)
def check_cell_evaluation():
    from mmpb.segmentation.validation.eval_cells import (eval_slice,
                                                         get_bounding_box)

    praw = os.path.join(ROOT_FOLDER, 'rawdata/sbem-6dpf-1-whole-raw.h5')
    pseg = os.path.join(
        ROOT_FOLDER,
        '0.5.5/segmentations/sbem-6dpf-1-whole-segmented-cells-labels.h5')
    pann = os.path.join(ROOT_FOLDER,
                        'rawdata/evaluation/validation_annotations.h5')

    table_path = '../../data/0.5.5/tables/sbem-6dpf-1-whole-segmented-cells-labels/regions.csv'
    ignore_seg_ids = get_ignore_seg_ids(table_path)

    with h5py.File(pseg, 'r') as fseg, h5py.File(pann, 'r') as fann:
        ds_seg = fseg['t00000/s00/0/cells']
        ds_ann = fann['xy/1000']

        print("Run evaluation ...")
        res, masks = eval_slice(ds_seg,
                                ds_ann,
                                ignore_seg_ids,
                                min_radius=16,
                                return_masks=True)
        fm, fs = masks['merges'], masks['splits']
        print()
        print("Eval result")
        print(res)
        print()

        print("Load raw data ...")
        bb = get_bounding_box(ds_ann)
        with h5py.File(praw, 'r') as f:
            raw = f['t00000/s00/1/cells'][bb].squeeze()

        print("Load seg data ...")
        seg = ds_seg[bb].squeeze().astype('uint32')

        view(to_source(raw, name='raw'), to_source(seg, name='seg'),
             to_source(fm, name='merges'), to_source(fs, name='splits'))
Exemplo n.º 9
0
def find_my_block(block_id):
    from heimdall import view, to_source

    scale = 5
    rpath = '../../../data/rawdata/sbem-6dpf-1-whole-raw.n5'
    k = 'setup0/timepoint0/s%i' % scale

    f = z5py.File(rpath)
    ds = f[k]
    ds.n_thread = 8
    raw = ds[:]

    path = './data.n5'
    k = 'volumes/clustering'
    f = z5py.File(path)
    ds = f[k]
    ds.n_threads = 8
    block = ds[:].astype('uint32')
    if block_id is not None:
        block = (block == block_id).astype('uint32')

    view(to_source(raw, name='raw'), to_source(block, name='block-volume'))
Exemplo n.º 10
0
def debug_preprocessing_seg():
    p_seg = './data.n5'
    k_seg = 'volumes/segmentation'

    halo = [50, 512, 512]
    with z5py.File(p_seg, 'r') as f:
        ds = f[k_seg]
        ds.n_threads = 8
        shape = ds.shape
        center = [sh // 2 for sh in shape]
        bb = tuple(slice(ce - ha, ce + ha) for ce, ha in zip(center, halo))
        seg = ds[bb]

    p_raw = '../../../data/rawdata/sbem-6dpf-1-whole-raw.n5'
    k_raw = 'setup0/timepoint0/s1'
    with z5py.File(p_raw, 'r') as f:
        ds = f[k_raw]
        ds.n_threads = 8
        print(ds.shape)
        raw = ds[bb]

    view(to_source(raw), to_source(seg))
Exemplo n.º 11
0
def mask_gut_nuclei(view_mask=False):
    p1 = '../data/0.0.0/images/prospr-6dpf-1-whole-segmented-Stomodeum.h5'
    p2 = '../data/rawdata/sbem-6dpf-1-whole-segmented-tissue-labels.h5'

    with h5py.File(p1, 'r') as f:
        ds = f['t00000/s00/0/cells']
        stomodeum = (ds[:] > 0).astype('float32')

    with h5py.File(p2, 'r') as f:
        ds = f['t00000/s00/2/cells']
        gut = ds[:] == 23

    stomodeum = vigra.sampling.resize(stomodeum, gut.shape,
                                      order=0).astype('bool')

    mask = np.logical_and(stomodeum == 0, gut)

    if view_mask:
        from heimdall import view, to_source

        p_nuc = '../data/0.0.0/segmentations/sbem-6dpf-1-whole-segmented-nuclei-labels.h5'
        with h5py.File(p_nuc, 'r') as f:
            nuc = f['t00000/s00/2/cells'][:] > 0
        nuc = vigra.sampling.resize(nuc.astype('float32'), gut.shape,
                                    order=0).astype('bool')

        view(to_source(gut.astype('uint32'), name='gut-em'),
             to_source(stomodeum.astype('uint32'), name='stomodeum-prospr'),
             to_source(mask.astype('uint32'), name='mask'),
             to_source(nuc.astype('uint32'), name='nuclei'))
    else:
        resolution = [0.4, 0.32, 0.32]
        mask = mask.astype('uint8') * 255
        make_bdv(mask,
                 'nucleus_exclusion_mask',
                 unit='micrometer',
                 resolution=resolution)
Exemplo n.º 12
0
def check_nucleus_evaluation():
    from mmpb.segmentation.validation.eval_nuclei import (eval_slice,
                                                          get_bounding_box)

    praw = os.path.join(ROOT_FOLDER, 'rawdata/sbem-6dpf-1-whole-raw.h5')
    pseg = os.path.join(
        ROOT_FOLDER,
        '0.0.0/segmentations/sbem-6dpf-1-whole-segmented-nuclei-labels.h5')
    pann = os.path.join(ROOT_FOLDER,
                        'rawdata/evaluation/validation_annotations.h5')

    with h5py.File(pseg, 'r') as fseg, h5py.File(pann, 'r') as fann:
        ds_seg = fseg['t00000/s00/0/cells']
        ds_ann = fann['xy/1000']

        print("Run evaluation ...")
        res, masks = eval_slice(ds_seg,
                                ds_ann,
                                min_radius=6,
                                return_masks=True)
        fm, fs = masks['merges'], masks['splits']
        print()
        print("Eval result")
        print(res)
        print()

        print("Load raw data ...")
        bb = get_bounding_box(ds_ann, scale_factor=4.)
        with h5py.File(praw, 'r') as f:
            raw = f['t00000/s00/3/cells'][bb].squeeze()

        print("Load seg data ...")
        seg = ds_seg[bb].squeeze().astype('uint32')

        view(to_source(raw, name='raw'), to_source(seg, name='seg'),
             to_source(fm, name='merges'), to_source(fs, name='splits'))
def refine(seg_path, seg_key, ignore_seg_ids,
           orientation, slice_id,
           project_folder,
           annotation_path=DEFAULT_ANNOTATION_PATH,
           raw_path=DEFAULT_RAW_PATH,
           raw_key='t00000/s00/1/cells'):

    label_path = os.path.join(project_folder, 'labels.npy')
    fm_path = os.path.join(project_folder, 'fm.npy')
    fs_path = os.path.join(project_folder, 'fs.npy')
    bb_path = os.path.join(project_folder, 'bounding_box.json')

    if os.path.exists(project_folder):
        print("Load from existing project")
        labels = np.load(label_path) if os.path.exists(label_path) else None
        fm = np.load(fm_path) if os.path.exists(fm_path) else None
        fs = np.load(fs_path) if os.path.exists(fs_path) else None
    else:
        print("Start new project")
        labels, fm, fs = None, None, None

    with open_file(annotation_path, 'r') as fval:
        ds = fval[orientation][str(slice_id)]
        bb = get_bounding_box(ds)
        ds.n_threads = 8
        if labels is None:
            labels = ds[:]

    starts = [int(b.start) for b in bb]
    stops = [int(b.stop) for b in bb]

    with open_file(seg_path, 'r') as f:
        ds = f[seg_key]
        ds.n_threads = 8
        seg = ds[bb].squeeze().astype('uint32')

    with open_file(raw_path, 'r') as f:
        ds = f[raw_key]
        ds.n_threads = 8
        raw = ds[bb].squeeze()

    assert labels.shape == seg.shape == raw.shape
    if fm is None:
        assert fs is None
        fm, fs = compute_masks(seg, labels, ignore_seg_ids)
    else:
        assert fs is not None

    with napari.gui_qt():
        viewer = view(to_source(raw, name='raw'), to_source(labels, name='labels'),
                      to_source(seg, name='seg'), to_source(fm, name='merges'),
                      to_source(fs, name='splits'), return_viewer=True)

        @viewer.bind_key('s')
        def save_labels(viewer):
            print("Saving state ...")
            layers = viewer.layers
            os.makedirs(project_folder, exist_ok=True)

            labels = layers['labels'].data
            np.save(label_path, labels)

            fm = layers['merges'].data
            np.save(fm_path, fm)

            fs = layers['splits'].data
            np.save(fs_path, fs)

            with open(bb_path, 'w') as f:
                json.dump({'starts': starts, 'stops': stops}, f)
            print("... done")