Exemplo n.º 1
0
def detect(det_net, inference_save_path, real_test_imgname_list):

    # 1. preprocess img
    img_plac = tf.placeholder(dtype=tf.uint8, shape=[None, None,
                                                     3])  # is RGB. not GBR
    img_batch = tf.cast(img_plac, tf.float32)
    img_batch = short_side_resize_for_inference_data(
        img_tensor=img_batch,
        target_shortside_len=cfgs.IMG_SHORT_SIDE_LEN,
        length_limitation=cfgs.IMG_MAX_LENGTH)
    img_batch = img_batch - tf.constant(cfgs.PIXEL_MEAN)
    img_batch = tf.expand_dims(img_batch, axis=0)  # [1, None, None, 3]

    detection_boxes, detection_scores, detection_category = det_net.build_whole_detection_network(
        input_img_batch=img_batch, gtboxes_batch=None)

    init_op = tf.group(tf.global_variables_initializer(),
                       tf.local_variables_initializer())

    restorer, restore_ckpt = det_net.get_restorer()

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
        sess.run(init_op)
        if not restorer is None:
            restorer.restore(sess, restore_ckpt)
            print('restore model')

        for i, a_img_name in enumerate(real_test_imgname_list):

            raw_img = cv2.imread(a_img_name)
            start = time.time()
            resized_img, detected_boxes, detected_scores, detected_categories = \
                sess.run(
                    [img_batch, detection_boxes, detection_scores, detection_category],
                    feed_dict={img_plac: raw_img[:, :, ::-1]}  # cv is BGR. But need RGB
                )
            end = time.time()
            # print("{} cost time : {} ".format(img_name, (end - start)))

            show_indices = detected_scores >= 0.7
            show_scores = detected_scores[show_indices]
            show_boxes = detected_boxes[show_indices]
            show_categories = detected_categories[show_indices]
            final_detections = draw_box_in_img.draw_boxes_with_label_and_scores(
                np.squeeze(resized_img, 0),
                boxes=show_boxes,
                labels=show_categories,
                scores=show_scores)
            nake_name = a_img_name.split('/')[-1]
            # print (inference_save_path + '/' + nake_name)
            cv2.imwrite(inference_save_path + '/' + nake_name,
                        final_detections[:, :, ::-1])

            tools.view_bar(
                '{} image cost {}s'.format(a_img_name, (end - start)), i + 1,
                len(real_test_imgname_list))
Exemplo n.º 2
0
def eval_ship(img_num, mode):
    with tf.Graph().as_default():

        img_name_batch, img_batch, gtboxes_and_label_batch, num_objects_batch = \
            next_batch(dataset_name=cfgs.DATASET_NAME,
                       batch_size=cfgs.BATCH_SIZE,
                       shortside_len=cfgs.SHORT_SIDE_LEN,
                       is_training=False)

        gtboxes_and_label = tf.py_func(
            back_forward_convert,
            inp=[tf.squeeze(gtboxes_and_label_batch, 0)],
            Tout=tf.float32)
        gtboxes_and_label = tf.reshape(gtboxes_and_label, [-1, 6])

        gtboxes_and_label_minAreaRectangle = get_horizen_minAreaRectangle(
            gtboxes_and_label)

        gtboxes_and_label_minAreaRectangle = tf.reshape(
            gtboxes_and_label_minAreaRectangle, [-1, 5])

        # ***********************************************************************************************
        # *                                         share net                                           *
        # ***********************************************************************************************
        _, share_net = get_network_byname(net_name=cfgs.NET_NAME,
                                          inputs=img_batch,
                                          num_classes=None,
                                          is_training=True,
                                          output_stride=None,
                                          global_pool=False,
                                          spatial_squeeze=False)

        # ***********************************************************************************************
        # *                                            RPN                                              *
        # ***********************************************************************************************
        rpn = build_rpn.RPN(
            net_name=cfgs.NET_NAME,
            inputs=img_batch,
            gtboxes_and_label=None,
            is_training=False,
            share_head=False,
            share_net=share_net,
            stride=cfgs.STRIDE,
            anchor_ratios=cfgs.ANCHOR_RATIOS,
            anchor_scales=cfgs.ANCHOR_SCALES,
            scale_factors=cfgs.SCALE_FACTORS,
            base_anchor_size_list=cfgs.
            BASE_ANCHOR_SIZE_LIST,  # P2, P3, P4, P5, P6
            level=cfgs.LEVEL,
            top_k_nms=cfgs.RPN_TOP_K_NMS,
            rpn_nms_iou_threshold=cfgs.RPN_NMS_IOU_THRESHOLD,
            max_proposals_num=cfgs.MAX_PROPOSAL_NUM,
            rpn_iou_positive_threshold=cfgs.RPN_IOU_POSITIVE_THRESHOLD,
            rpn_iou_negative_threshold=cfgs.RPN_IOU_NEGATIVE_THRESHOLD,
            rpn_mini_batch_size=cfgs.RPN_MINIBATCH_SIZE,
            rpn_positives_ratio=cfgs.RPN_POSITIVE_RATE,
            remove_outside_anchors=False,  # whether remove anchors outside
            rpn_weight_decay=cfgs.WEIGHT_DECAY[cfgs.NET_NAME])

        # rpn predict proposals
        rpn_proposals_boxes, rpn_proposals_scores = rpn.rpn_proposals(
        )  # rpn_score shape: [300, ]

        # ***********************************************************************************************
        # *                                         Fast RCNN                                           *
        # ***********************************************************************************************
        fast_rcnn = build_fast_rcnn1.FastRCNN(
            feature_pyramid=rpn.feature_pyramid,
            rpn_proposals_boxes=rpn_proposals_boxes,
            rpn_proposals_scores=rpn_proposals_scores,
            img_shape=tf.shape(img_batch),
            roi_size=cfgs.ROI_SIZE,
            roi_pool_kernel_size=cfgs.ROI_POOL_KERNEL_SIZE,
            scale_factors=cfgs.SCALE_FACTORS,
            gtboxes_and_label=None,
            gtboxes_and_label_minAreaRectangle=
            gtboxes_and_label_minAreaRectangle,
            fast_rcnn_nms_iou_threshold=cfgs.FAST_RCNN_NMS_IOU_THRESHOLD,
            fast_rcnn_maximum_boxes_per_img=100,
            fast_rcnn_nms_max_boxes_per_class=cfgs.
            FAST_RCNN_NMS_MAX_BOXES_PER_CLASS,
            show_detections_score_threshold=cfgs.FINAL_SCORE_THRESHOLD,
            # show detections which score >= 0.6
            num_classes=cfgs.CLASS_NUM,
            fast_rcnn_minibatch_size=cfgs.FAST_RCNN_MINIBATCH_SIZE,
            fast_rcnn_positives_ratio=cfgs.FAST_RCNN_POSITIVE_RATE,
            fast_rcnn_positives_iou_threshold=cfgs.
            FAST_RCNN_IOU_POSITIVE_THRESHOLD,
            # iou>0.5 is positive, iou<0.5 is negative
            use_dropout=cfgs.USE_DROPOUT,
            weight_decay=cfgs.WEIGHT_DECAY[cfgs.NET_NAME],
            is_training=False,
            level=cfgs.LEVEL)

        fast_rcnn_decode_boxes, fast_rcnn_score, num_of_objects, detection_category, \
        fast_rcnn_decode_boxes_rotate, fast_rcnn_score_rotate, num_of_objects_rotate, detection_category_rotate = \
            fast_rcnn.fast_rcnn_predict()

        if mode == 0:
            fast_rcnn_decode_boxes_rotate = get_horizen_minAreaRectangle(
                fast_rcnn_decode_boxes_rotate, False)

        # train
        init_op = tf.group(tf.global_variables_initializer(),
                           tf.local_variables_initializer())

        restorer, restore_ckpt = restore_model.get_restorer()
        with tf.Session() as sess:
            sess.run(init_op)
            if not restorer is None:
                restorer.restore(sess, restore_ckpt)
                print('restore model')

            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(sess, coord)

            gtboxes_horizontal_dict = {}
            predict_horizontal_dict = {}
            gtboxes_rotate_dict = {}
            predict_rotate_dict = {}

            for i in range(img_num):

                start = time.time()

                _img_name_batch, _img_batch, _gtboxes_and_label, _gtboxes_and_label_minAreaRectangle, \
                _fast_rcnn_decode_boxes, _fast_rcnn_score, _detection_category, _fast_rcnn_decode_boxes_rotate, \
                _fast_rcnn_score_rotate, _detection_category_rotate \
                    = sess.run([img_name_batch, img_batch, gtboxes_and_label, gtboxes_and_label_minAreaRectangle,
                                fast_rcnn_decode_boxes, fast_rcnn_score, detection_category, fast_rcnn_decode_boxes_rotate,
                                fast_rcnn_score_rotate, detection_category_rotate])
                end = time.time()

                # gtboxes convert dict
                gtboxes_horizontal_dict[str(_img_name_batch[0])] = []
                predict_horizontal_dict[str(_img_name_batch[0])] = []
                gtboxes_rotate_dict[str(_img_name_batch[0])] = []
                predict_rotate_dict[str(_img_name_batch[0])] = []

                gtbox_horizontal_list, predict_horizontal_list = \
                    make_dict_packle(_gtboxes_and_label_minAreaRectangle, _fast_rcnn_decode_boxes,
                                     _fast_rcnn_score, _detection_category)

                if mode == 0:
                    gtbox_rotate_list, predict_rotate_list = \
                        make_dict_packle(_gtboxes_and_label_minAreaRectangle, _fast_rcnn_decode_boxes_rotate,
                                         _fast_rcnn_score_rotate, _detection_category_rotate)
                else:
                    gtbox_rotate_list, predict_rotate_list = \
                        make_dict_packle(_gtboxes_and_label, _fast_rcnn_decode_boxes_rotate,
                                         _fast_rcnn_score_rotate, _detection_category_rotate)

                gtboxes_horizontal_dict[str(
                    _img_name_batch[0])].extend(gtbox_horizontal_list)
                predict_horizontal_dict[str(
                    _img_name_batch[0])].extend(predict_horizontal_list)
                gtboxes_rotate_dict[str(
                    _img_name_batch[0])].extend(gtbox_rotate_list)
                predict_rotate_dict[str(
                    _img_name_batch[0])].extend(predict_rotate_list)

                view_bar(
                    '{} image cost {}s'.format(str(_img_name_batch[0]),
                                               (end - start)), i + 1, img_num)

            fw1 = open('gtboxes_horizontal_dict.pkl', 'w')
            fw2 = open('predict_horizontal_dict.pkl', 'w')
            fw3 = open('gtboxes_rotate_dict.pkl', 'w')
            fw4 = open('predict_rotate_dict.pkl', 'w')
            pickle.dump(gtboxes_horizontal_dict, fw1)
            pickle.dump(predict_horizontal_dict, fw2)
            pickle.dump(gtboxes_rotate_dict, fw3)
            pickle.dump(predict_rotate_dict, fw4)
            fw1.close()
            fw2.close()
            fw3.close()
            fw4.close()
            coord.request_stop()
            coord.join(threads)
Exemplo n.º 3
0
def eval_with_plac(img_dir, det_net, image_ext, draw_imgs=False):

    # 1. preprocess img
    img_plac = tf.placeholder(dtype=tf.uint8, shape=[None, None,
                                                     3])  # is RGB. not GBR
    img_batch = tf.cast(img_plac, tf.float32)
    img_batch = img_batch - tf.constant(cfgs.PIXEL_MEAN)
    img_batch = short_side_resize_for_inference_data(
        img_tensor=img_batch,
        target_shortside_len=cfgs.IMG_SHORT_SIDE_LEN,
        is_resize=False)

    det_boxes_r, det_scores_r, det_category_r = det_net.build_whole_detection_network(
        input_img_batch=img_batch, gtboxes_h_batch=None, gtboxes_r_batch=None)

    init_op = tf.group(tf.global_variables_initializer(),
                       tf.local_variables_initializer())

    restorer, restore_ckpt = det_net.get_restorer()

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
        sess.run(init_op)
        if not restorer is None:
            restorer.restore(sess, restore_ckpt)
            print('restore model')

        all_boxes_h = []
        all_boxes_r = []
        imgs = os.listdir(img_dir)
        for i, a_img_name in enumerate(imgs):

            a_img_name = a_img_name.split(image_ext)[0]
            recs = {}
            recs[a_img_name] = parse_rec(
                os.path.join(test_annotation_path, a_img_name + '.xml'))
            #R = [obj for obj in recs[a_img_name]]
            bbox = np.squeeze(np.array([x['bbox'] for x in recs[a_img_name]]))
            #labels = bbox[:, -1]
            if len(bbox.shape) == 1:
                bbox = np.expand_dims(bbox, axis=0)
            labels = bbox[:, -1]

            raw_img = cv2.imread(os.path.join(img_dir, a_img_name + image_ext))
            raw_h, raw_w = raw_img.shape[0], raw_img.shape[1]

            start = time.time()
            resized_img,  \
            det_boxes_r_, det_scores_r_, det_category_r_ = \
                sess.run(
                    [img_batch,
                     det_boxes_r, det_scores_r, det_category_r],
                    feed_dict={img_plac: raw_img}
                )
            end = time.time()
            det_boxes_r_ = det_boxes_r_[det_scores_r_ >= 0.4]
            det_category_r_ = det_category_r_[det_scores_r_ >= 0.4]
            det_scores_r_ = det_scores_r_[det_scores_r_ >= 0.4]

            keep = nms_rotate.nms_rotate_cpu(det_boxes_r_, det_scores_r_, 0.3,
                                             20)
            det_boxes_r_ = det_boxes_r_[keep]
            det_scores_r_ = det_scores_r_[keep]
            det_category_r_ = det_category_r_[keep]
            ##### box_ratio > 2  or < 1/2
            index = (det_boxes_r_[:, 2] / det_boxes_r_[:, 3] >
                     2) | (det_boxes_r_[:, 2] / det_boxes_r_[:, 3] <= 0.5)
            det_boxes_r_ = det_boxes_r_[index]
            det_scores_r_ = det_scores_r_[index]
            det_category_r_ = det_category_r_[index]

            # print("{} cost time : {} ".format(img_name, (end - start)))
            if draw_imgs:
                det_detections_h = draw_box_in_img.draw_rotate_box_cv1(
                    np.squeeze(resized_img, 0),
                    boxes=bbox,
                    labels=labels,
                    scores=np.ones(bbox.shape[0]))
                det_detections_r = draw_box_in_img.draw_rotate_box_cv(
                    np.squeeze(resized_img, 0),
                    boxes=det_boxes_r_,
                    labels=det_category_r_,
                    scores=det_scores_r_)
                save_dir = os.path.join(cfgs.TEST_SAVE_PATH, cfgs.VERSION)
                tools.mkdir(save_dir)
                cv2.imwrite(save_dir + '/' + a_img_name + '_h.jpg',
                            det_detections_h[:, :, ::-1])
                cv2.imwrite(save_dir + '/' + a_img_name + '_r.jpg',
                            det_detections_r[:, :, ::-1])

            # xmin, ymin, xmax, ymax = det_boxes_h_[:, 0], det_boxes_h_[:, 1], \
            #                          det_boxes_h_[:, 2], det_boxes_h_[:, 3]

            if det_boxes_r_.shape[0] != 0:
                resized_h, resized_w = resized_img.shape[1], resized_img.shape[
                    2]
                det_boxes_r_ = forward_convert(det_boxes_r_, False)
                det_boxes_r_[:, 0::2] *= (raw_w / resized_w)
                det_boxes_r_[:, 1::2] *= (raw_h / resized_h)
                det_boxes_r_ = back_forward_convert(det_boxes_r_, False)

            x_c, y_c, w, h, theta = det_boxes_r_[:, 0], det_boxes_r_[:, 1], det_boxes_r_[:, 2], \
                                    det_boxes_r_[:, 3], det_boxes_r_[:, 4]

            # xmin = xmin * raw_w / resized_w
            # xmax = xmax * raw_w / resized_w
            # ymin = ymin * raw_h / resized_h
            # ymax = ymax * raw_h / resized_h

            # boxes_h = np.transpose(np.stack([xmin, ymin, xmax, ymax]))
            boxes_r = np.transpose(np.stack([x_c, y_c, w, h, theta]))
            # dets_h = np.hstack((det_category_h_.reshape(-1, 1),
            #                     det_scores_h_.reshape(-1, 1),
            #                     boxes_h))
            dets_r = np.hstack((det_category_r_.reshape(-1, 1),
                                det_scores_r_.reshape(-1, 1), boxes_r))
            # all_boxes_h.append(dets_h)
            all_boxes_r.append(dets_r)

            tools.view_bar(
                '{} image cost {}s'.format(a_img_name, (end - start)), i + 1,
                len(imgs))

        fw1 = open(cfgs.VERSION + '_detections_h.pkl', 'w')
        fw2 = open(cfgs.VERSION + '_detections_r.pkl', 'w')
        pickle.dump(all_boxes_h, fw1)
        pickle.dump(all_boxes_r, fw2)
Exemplo n.º 4
0
def eval_with_plac(det_net, real_test_imgname_list, img_root, draw_imgs=False):

    # 1. preprocess img
    img_plac = tf.placeholder(dtype=tf.uint8, shape=[None, None,
                                                     3])  # is RGB. not BGR
    img_batch = tf.cast(img_plac, tf.float32)

    img_batch = short_side_resize_for_inference_data(
        img_tensor=img_batch,
        target_shortside_len=cfgs.IMG_SHORT_SIDE_LEN,
        length_limitation=cfgs.IMG_MAX_LENGTH)
    img_batch = img_batch - tf.constant(cfgs.PIXEL_MEAN)
    img_batch = tf.expand_dims(img_batch, axis=0)

    detection_boxes, detection_scores, detection_category = det_net.build_whole_detection_network(
        input_img_batch=img_batch, gtboxes_batch=None)

    init_op = tf.group(tf.global_variables_initializer(),
                       tf.local_variables_initializer())

    restorer, restore_ckpt = det_net.get_restorer()

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
        sess.run(init_op)
        if not restorer is None:
            restorer.restore(sess, restore_ckpt)
            print('restore model')

        all_boxes = []
        for i, a_img_name in enumerate(real_test_imgname_list):

            raw_img = cv2.imread(os.path.join(img_root, a_img_name))
            raw_h, raw_w = raw_img.shape[0], raw_img.shape[1]

            start = time.time()
            resized_img, detected_boxes, detected_scores, detected_categories = \
                sess.run(
                    [img_batch, detection_boxes, detection_scores, detection_category],
                    feed_dict={img_plac: raw_img[:, :, ::-1]}  # cv is BGR. But need RGB
                )
            end = time.time()
            # print("{} cost time : {} ".format(img_name, (end - start)))
            if draw_imgs:
                show_indices = detected_scores >= cfgs.SHOW_SCORE_THRSHOLD
                show_scores = detected_scores[show_indices]
                show_boxes = detected_boxes[show_indices]
                show_categories = detected_categories[show_indices]
                final_detections = draw_box_in_img.draw_boxes_with_label_and_scores(
                    np.squeeze(resized_img, 0),
                    boxes=show_boxes,
                    labels=show_categories,
                    scores=show_scores)
                if not os.path.exists(cfgs.TEST_SAVE_PATH):
                    os.makedirs(cfgs.TEST_SAVE_PATH)
                nake_name = os.path.split(a_img_name)[1]
                cv2.imwrite(cfgs.TEST_SAVE_PATH + '/' + nake_name,
                            final_detections[:, :, ::-1])
                # cv2.imwrite(cfgs.TEST_SAVE_PATH + '/' + a_img_name + '.jpg',
                #             final_detections[:, :, ::-1])


            xmin, ymin, xmax, ymax = detected_boxes[:, 0], detected_boxes[:, 1], \
                                     detected_boxes[:, 2], detected_boxes[:, 3]

            resized_h, resized_w = resized_img.shape[1], resized_img.shape[2]

            xmin = xmin * raw_w / resized_w
            xmax = xmax * raw_w / resized_w

            ymin = ymin * raw_h / resized_h
            ymax = ymax * raw_h / resized_h

            boxes = np.transpose(np.stack([xmin, ymin, xmax, ymax]))
            dets = np.hstack((detected_categories.reshape(-1, 1),
                              detected_scores.reshape(-1, 1), boxes))
            all_boxes.append(dets)

            tools.view_bar(
                '{} image cost {}s'.format(a_img_name, (end - start)), i + 1,
                len(real_test_imgname_list))

        save_dir = os.path.join(cfgs.EVALUATE_DIR, cfgs.VERSION)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        fw1 = open(os.path.join(save_dir, 'detections.pkl'), 'wb')
        pickle.dump(all_boxes, fw1)
Exemplo n.º 5
0
def test(img_num):
    with tf.Graph().as_default():

        # img = tf.placeholder(shape=[None, None, 3], dtype=tf.uint8)

        img_name_batch, img_batch, gtboxes_and_label_batch, num_objects_batch = \
            next_batch(dataset_name=cfgs.DATASET_NAME,
                       batch_size=cfgs.BATCH_SIZE,
                       shortside_len=cfgs.SHORT_SIDE_LEN,
                       is_training=False)

        gtboxes_and_label = tf.py_func(back_forward_convert,
                                       inp=[tf.squeeze(gtboxes_and_label_batch, 0)],
                                       Tout=tf.float32)
        gtboxes_and_label = tf.reshape(gtboxes_and_label, [-1, 6])

        # ***********************************************************************************************
        # *                                         share net                                           *
        # ***********************************************************************************************
        _, share_net = get_network_byname(net_name=cfgs.NET_NAME,
                                          inputs=img_batch,
                                          num_classes=None,
                                          is_training=True,
                                          output_stride=None,
                                          global_pool=False,
                                          spatial_squeeze=False)
        # ***********************************************************************************************
        # *                                            RPN                                              *
        # ***********************************************************************************************
        rpn = build_rpn.RPN(net_name=cfgs.NET_NAME,
                            inputs=img_batch,
                            gtboxes_and_label=gtboxes_and_label,
                            is_training=False,
                            share_head=False,
                            share_net=share_net,
                            anchor_ratios=cfgs.ANCHOR_RATIOS,
                            anchor_scales=cfgs.ANCHOR_SCALES,
                            anchor_angles=cfgs.ANCHOR_ANGLES,
                            scale_factors=cfgs.SCALE_FACTORS,
                            base_anchor_size_list=cfgs.BASE_ANCHOR_SIZE_LIST,  # P2, P3, P4, P5, P6
                            level=cfgs.LEVEL,
                            anchor_stride=cfgs.ANCHOR_STRIDE,
                            top_k_nms=cfgs.RPN_TOP_K_NMS,
                            kernel_size=cfgs.KERNEL_SIZE,
                            use_angles_condition=True,
                            anchor_angle_threshold=cfgs.RPN_ANCHOR_ANGLES_THRESHOLD,
                            nms_angle_threshold=cfgs.RPN_NMS_ANGLES_THRESHOLD,
                            rpn_nms_iou_threshold=cfgs.RPN_NMS_IOU_THRESHOLD,
                            max_proposals_num=cfgs.MAX_PROPOSAL_NUM,
                            rpn_iou_positive_threshold=cfgs.RPN_IOU_POSITIVE_THRESHOLD,
                            rpn_iou_negative_threshold=cfgs.RPN_IOU_NEGATIVE_THRESHOLD,
                            rpn_mini_batch_size=cfgs.RPN_MINIBATCH_SIZE,
                            rpn_positives_ratio=cfgs.RPN_POSITIVE_RATE,
                            remove_outside_anchors=False,  # whether remove anchors outside
                            rpn_weight_decay=cfgs.WEIGHT_DECAY[cfgs.NET_NAME],
                            scope='')

        # rpn predict proposals
        rpn_proposals_boxes, rpn_proposals_scores = rpn.rpn_proposals()  # rpn_score shape: [300, ]
        # _, _, rpn_top_k_boxes, rpn_top_k_scores = rpn.rpn_losses()

        # ***********************************************************************************************
        # *                                         Fast RCNN                                           *
        # ***********************************************************************************************
        fast_rcnn = build_fast_rcnn.FastRCNN(img_batch=img_batch,
                                             feature_pyramid=rpn.feature_pyramid,
                                             rpn_proposals_boxes=rpn_proposals_boxes,
                                             rpn_proposals_scores=rpn_proposals_scores,
                                             stop_gradient_for_proposals=False,
                                             img_shape=tf.shape(img_batch),
                                             roi_size=cfgs.ROI_SIZE,
                                             roi_pool_kernel_size=cfgs.ROI_POOL_KERNEL_SIZE,
                                             scale_factors=cfgs.SCALE_FACTORS,
                                             gtboxes_and_label=None,
                                             fast_rcnn_nms_iou_threshold=cfgs.FAST_RCNN_NMS_IOU_THRESHOLD,
                                             top_k_nms=cfgs.FAST_RCNN_TOP_K_NMS,
                                             nms_angle_threshold=cfgs.FAST_RCNN_NMS_ANGLES_THRESHOLD,
                                             use_angle_condition=False,
                                             level=cfgs.LEVEL,
                                             fast_rcnn_maximum_boxes_per_img=100,
                                             fast_rcnn_nms_max_boxes_per_class=cfgs.FAST_RCNN_NMS_MAX_BOXES_PER_CLASS,
                                             show_detections_score_threshold=cfgs.FINAL_SCORE_THRESHOLD,
                                             # show detections which score >= 0.6
                                             num_classes=cfgs.CLASS_NUM,
                                             fast_rcnn_minibatch_size=cfgs.FAST_RCNN_MINIBATCH_SIZE,
                                             fast_rcnn_positives_ratio=cfgs.FAST_RCNN_POSITIVE_RATE,
                                             fast_rcnn_positives_iou_threshold=cfgs.FAST_RCNN_IOU_POSITIVE_THRESHOLD,
                                             boxes_angle_threshold=cfgs.FAST_RCNN_BOXES_ANGLES_THRESHOLD,
                                             use_dropout=cfgs.USE_DROPOUT,
                                             weight_decay=cfgs.WEIGHT_DECAY[cfgs.NET_NAME],
                                             is_training=False)

        fast_rcnn_decode_boxes, fast_rcnn_score, num_of_objects, detection_category = \
            fast_rcnn.fast_rcnn_predict()

        # test
        init_op = tf.group(
            tf.global_variables_initializer(),
            tf.local_variables_initializer()
        )

        restorer, restore_ckpt = restore_model.get_restorer()

        config = tf.ConfigProto()
        # config.gpu_options.per_process_gpu_memory_fraction = 0.5
        config.gpu_options.allow_growth = True
        with tf.Session(config=config) as sess:
            sess.run(init_op)
            if not restorer is None:
                restorer.restore(sess, restore_ckpt)
                print('restore model')

            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(sess, coord)

            for i in range(img_num):

                start = time.time()

                _img_name_batch, _img_batch, _gtboxes_and_label, _fast_rcnn_decode_boxes, \
                _fast_rcnn_score, _detection_category \
                    = sess.run([img_name_batch, img_batch, gtboxes_and_label, fast_rcnn_decode_boxes,
                                fast_rcnn_score, detection_category])
                end = time.time()

                _img_batch = np.squeeze(_img_batch, axis=0)

                _img_batch_fpn = help_utils.draw_box_cv(_img_batch,
                                                        boxes=_fast_rcnn_decode_boxes,
                                                        labels=_detection_category,
                                                        scores=_fast_rcnn_score)

                cv2.imwrite(cfgs.TEST_SAVE_PATH + '/{}_fpn.jpg'.format(str(_img_name_batch[0]).split('.tif')[0]),
                            _img_batch_fpn)

                temp_label = np.reshape(_gtboxes_and_label[:, -1:], [-1, ]).astype(np.int64)
                _img_batch_gt = help_utils.draw_box_cv(_img_batch,
                                                       boxes=_gtboxes_and_label[:, :-1],
                                                       labels=temp_label,
                                                       scores=None)

                cv2.imwrite(cfgs.TEST_SAVE_PATH + '/{}_gt.jpg'.format(str(_img_name_batch[0]).split('.tif')[0]),
                            _img_batch_gt)

                view_bar('{} image cost {}s'.format(str(_img_name_batch[0]), (end - start)), i+1, img_num)

            coord.request_stop()
            coord.join(threads)
Exemplo n.º 6
0
def eval_with_plac(det_net, real_test_imgname_list, draw_imgs=False):

    # 1. preprocess img
    img_plac = tf.placeholder(dtype=tf.uint8, shape=[None, None,
                                                     3])  # is RGB. not BGR
    img_batch = tf.cast(img_plac, tf.float32)

    img_batch = short_side_resize_for_inference_data(
        img_tensor=img_batch,
        target_shortside_len=cfgs.IMG_SHORT_SIDE_LEN,
        length_limitation=cfgs.IMG_MAX_LENGTH)
    img_batch = img_batch - tf.constant(cfgs.PIXEL_MEAN)
    img_batch = tf.expand_dims(img_batch, axis=0)

    detection_boxes, detection_scores, detection_category = det_net.build_whole_detection_network(
        input_img_batch=img_batch, gtboxes_batch=None)

    restorer, restore_ckpt = det_net.get_restorer()
    init_op = tf.group(tf.global_variables_initializer(),
                       tf.local_variables_initializer())
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
        sess.run(init_op)
        if not restorer is None:
            restorer.restore(sess, restore_ckpt)
            print('restore model')

        all_boxes = []
        for i, a_img_name in enumerate(real_test_imgname_list):

            raw_img = cv2.imread(a_img_name)
            raw_h, raw_w = raw_img.shape[0], raw_img.shape[1]

            start = time.time()
            resized_img, detected_boxes, detected_scores, detected_categories = \
                sess.run(
                    [img_batch, detection_boxes, detection_scores, detection_category],
                    feed_dict={img_plac: raw_img[:, :, ::-1]}  # cv is BGR. But need RGB
                )
            end = time.time()
            if cfgs.SOFT_NMS:
                boxes_soft_nms = []
                scores_soft_nms = []
                category_soft_nms = []
                tmp_boxes = np.reshape(detected_boxes, (cfgs.CLASS_NUM, -1, 4),
                                       order='C')
                # print("tmp_boxes is ", tmp_boxes.shape, 'type is ', type(tmp_boxes))
                tmp_scores = np.reshape(detected_scores, (cfgs.CLASS_NUM, -1),
                                        order='C')
                tmp_category = np.reshape(detected_categories,
                                          (cfgs.CLASS_NUM, -1),
                                          order='C')
                for ind in range(cfgs.CLASS_NUM):
                    tmp_class_boxes = tmp_boxes[ind, :, :]
                    tmp_class_scores = tmp_scores[ind, :]
                    tmp_class_category = tmp_category[ind, :]
                    # print("tmp_boxes is ",tmp_class_boxes.shape,'type is ',type(tmp_class_boxes))
                    # print('tmp score is ',tmp_class_scores.shape)
                    dets = np.hstack(
                        (tmp_class_boxes,
                         tmp_class_scores[:, np.newaxis])).astype(np.float32,
                                                                  copy=False)
                    # keep=py_cpu_softnms(tmp_class_boxes,tmp_class_scores,method=4)
                    keep = py_soft_nms(dets, 'greedy')
                    # keep=gpu_nms(dets,cfgs.FAST_RCNN_NMS_IOU_THRESHOLD,0)
                    class_boxes = tmp_class_boxes[keep]
                    class_scores = tmp_class_scores[keep]
                    class_category = tmp_class_category[keep]
                    boxes_soft_nms.append(class_boxes)
                    scores_soft_nms.append(class_scores)
                    category_soft_nms.append(class_category)
                detected_boxes = np.concatenate(boxes_soft_nms, axis=0)
                detected_scores = np.concatenate(scores_soft_nms, axis=0)
                detected_categories = np.concatenate(category_soft_nms, axis=0)

            # print("{} cost time : {} ".format(img_name, (end - start)))
            if draw_imgs:
                show_indices = detected_scores >= cfgs.SHOW_SCORE_THRSHOLD
                show_scores = detected_scores[show_indices]
                show_boxes = detected_boxes[show_indices]
                show_categories = detected_categories[show_indices]
                final_detections = draw_box_in_img.draw_boxes_with_label_and_scores(
                    np.squeeze(resized_img, 0),
                    boxes=show_boxes,
                    labels=show_categories,
                    scores=show_scores)
                if not os.path.exists(cfgs.TEST_SAVE_PATH):
                    os.makedirs(cfgs.TEST_SAVE_PATH)

                cv2.imwrite(cfgs.TEST_SAVE_PATH + '/' + a_img_name + '.jpg',
                            final_detections[:, :, ::-1])

            xmin, ymin, xmax, ymax = detected_boxes[:, 0], detected_boxes[:, 1], \
                                     detected_boxes[:, 2], detected_boxes[:, 3]

            resized_h, resized_w = resized_img.shape[1], resized_img.shape[2]

            xmin = xmin * raw_w / resized_w
            xmax = xmax * raw_w / resized_w

            ymin = ymin * raw_h / resized_h
            ymax = ymax * raw_h / resized_h

            boxes = np.transpose(np.stack([xmin, ymin, xmax, ymax]))
            dets = np.hstack((detected_categories.reshape(-1, 1),
                              detected_scores.reshape(-1, 1), boxes))
            all_boxes.append(dets)

            tools.view_bar(
                '{} image cost {}s'.format(os.path.basename(a_img_name),
                                           (end - start)), i + 1,
                len(real_test_imgname_list))

        save_dir = os.path.join(cfgs.EVALUATE_DIR, cfgs.DATASET_NAME,
                                cfgs.VERSION)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        fw1 = open(os.path.join(save_dir, 'detections.pkl'), 'wb')
        pickle.dump(all_boxes, fw1)
        return all_boxes
Exemplo n.º 7
0
def detect(det_net, src_dir, res_dir, draw_imgs):

    # 1. preprocess img
    img_plac = tf.placeholder(dtype=tf.uint8, shape=[None, None,
                                                     3])  # is RGB. not GBR
    img_batch = tf.cast(img_plac, tf.float32)
    img_batch = short_side_resize_for_inference_data(
        img_tensor=img_batch,
        target_shortside_len=cfgs.IMG_SHORT_SIDE_LEN,
        length_limitation=cfgs.IMG_MAX_LENGTH)
    img_batch = img_batch - tf.constant(cfgs.PIXEL_MEAN)
    img_batch = tf.expand_dims(img_batch, axis=0)  # [1, None, None, 3]

    result_dict = det_net.build_whole_detection_network(
        input_img_batch=img_batch, gtboxes_batch=None)

    init_op = tf.group(tf.global_variables_initializer(),
                       tf.local_variables_initializer())

    restorer, restore_ckpt = det_net.get_restorer()

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
        sess.run(init_op)
        if not restorer is None:
            restorer.restore(sess, restore_ckpt)
            print('restore model')

        sub_folders = os.listdir(src_dir)
        for sub_folder in sub_folders:

            folder_dir = os.path.join(src_dir, sub_folder)
            real_test_imgname_list = [
                os.path.join(folder_dir, img_name)
                for img_name in os.listdir(folder_dir)
            ]

            tools.mkdir(os.path.join(res_dir, sub_folder))

            for i, a_img_name in enumerate(real_test_imgname_list):

                raw_img = cv2.imread(a_img_name)

                raw_h, raw_w = raw_img.shape[0], raw_img.shape[1]

                start = time.time()
                resized_img, result_dict_ = \
                    sess.run(
                        [img_batch, result_dict],
                        feed_dict={img_plac: raw_img[:, :, ::-1]}  # cv is BGR. But need RGB
                    )
                end = time.time()

                detected_boxes, detected_scores, detected_categories = merge_result(
                    result_dict_)

                nake_name = a_img_name.split('/')[-1]

                xmin, ymin, xmax, ymax = detected_boxes[:, 0], detected_boxes[:, 1], \
                                         detected_boxes[:, 2], detected_boxes[:, 3]

                resized_h, resized_w = resized_img.shape[1], resized_img.shape[
                    2]

                xmin = xmin * raw_w / resized_w
                xmax = xmax * raw_w / resized_w

                ymin = ymin * raw_h / resized_h
                ymax = ymax * raw_h / resized_h

                boxes = np.transpose(np.stack([xmin, ymin, xmax, ymax]))
                dets = np.hstack((detected_categories.reshape(-1, 1),
                                  detected_scores.reshape(-1, 1), boxes))

                show_indices = detected_scores >= cfgs.SHOW_SCORE_THRSHOLD
                show_scores = detected_scores[show_indices]
                show_boxes = boxes[show_indices]
                show_categories = detected_categories[show_indices]

                f = open(
                    os.path.join(res_dir, sub_folder) + '/' +
                    nake_name.split('.')[0] + '.txt', 'w')
                f.write('{}\n'.format(nake_name.split('.')[0]))
                # f.write('{}\n'.format(dets.shape[0]))
                # for inx in range(dets.shape[0]):
                #
                #     f.write('%d %d %d %d %.3f\n' % (int(dets[inx][2]),
                #                                     int(dets[inx][3]),
                #                                     int(dets[inx][4]) - int(dets[inx][2]),
                #                                     int(dets[inx][5]) - int(dets[inx][3]),
                #                                     dets[inx][1]))

                f.write('{}\n'.format(show_boxes.shape[0]))
                for inx in range(show_boxes.shape[0]):
                    f.write('%d %d %d %d %.3f\n' %
                            (int(show_boxes[inx][0]), int(show_boxes[inx][1]),
                             int(show_boxes[inx][2]) - int(show_boxes[inx][0]),
                             int(show_boxes[inx][3]) - int(show_boxes[inx][1]),
                             show_scores[inx]))

                if draw_imgs:
                    final_detections = draw_box_in_img.draw_boxes_with_label_and_scores(
                        raw_img - np.array(cfgs.PIXEL_MEAN),
                        boxes=show_boxes,
                        labels=show_categories,
                        scores=show_scores)

                    tools.mkdir(cfgs.TEST_SAVE_PATH)
                    cv2.imwrite(cfgs.TEST_SAVE_PATH + '/' + nake_name,
                                final_detections)

                tools.view_bar(
                    '{} image cost {}s'.format(a_img_name, (end - start)),
                    i + 1, len(real_test_imgname_list))
def eval_coco(det_net, real_test_img_list, draw_imgs=False):

    # 1. preprocess img
    img_plac = tf.placeholder(dtype=tf.uint8, shape=[None, None, 3])  # is RGB. not BGR
    img_batch = tf.cast(img_plac, tf.float32)

    img_batch = short_side_resize_for_inference_data(img_tensor=img_batch,
                                                     target_shortside_len=cfgs.IMG_SHORT_SIDE_LEN,
                                                     length_limitation=cfgs.IMG_MAX_LENGTH,
                                                     is_resize=False)
    if cfgs.NET_NAME in ['resnet101_v1d', 'resnet50_v1d']:
        img_batch = (img_batch / 255 - tf.constant(cfgs.PIXEL_MEAN_)) / tf.constant(cfgs.PIXEL_STD)
    else:
        img_batch = img_batch - tf.constant(cfgs.PIXEL_MEAN)

    # img_batch = (img_batch - tf.constant(cfgs.PIXEL_MEAN)) / (tf.constant(cfgs.PIXEL_STD)*255)
    img_batch = tf.expand_dims(img_batch, axis=0)

    detection_boxes, detection_scores, detection_category = det_net.build_whole_detection_network(
        input_img_batch=img_batch,
        gtboxes_batch=None)

    init_op = tf.group(
        tf.global_variables_initializer(),
        tf.local_variables_initializer()
    )

    restorer, restore_ckpt = det_net.get_restorer()

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
        sess.run(init_op)
        if not restorer is None:
            restorer.restore(sess, restore_ckpt)
            print('restore model')

        save_path = os.path.join('./eval_coco', cfgs.VERSION)
        tools.mkdir(save_path)
        fw_json_dt = open(os.path.join(save_path, 'coco_minival_ms.json'), 'w')
        coco_det = []
        for i, a_img in enumerate(real_test_img_list):

            record = json.loads(a_img)
            raw_img = cv2.imread(record['fpath'])
            raw_h, raw_w = raw_img.shape[0], raw_img.shape[1]

            start = time.time()

            detected_scores_, detected_boxes_, detected_categories_ = [], [], []

            for ss in [600, 800, 1000, 1200]:  # cfgs.IMG_SHORT_SIDE_LEN:
                img_resize = cv2.resize(raw_img, (ss, ss))

                resized_img, tmp_detected_boxes, tmp_detected_scores, tmp_detected_categories = \
                    sess.run(
                        [img_batch, detection_boxes, detection_scores, detection_category],
                        feed_dict={img_plac: img_resize[:, :, ::-1]}  # cv is BGR. But need RGB
                    )

                eval_indices = tmp_detected_scores >= 0.01
                tmp_detected_scores = tmp_detected_scores[eval_indices]
                tmp_detected_boxes = tmp_detected_boxes[eval_indices]
                tmp_detected_categories = tmp_detected_categories[eval_indices]

                xmin, ymin, xmax, ymax = tmp_detected_boxes[:, 0], tmp_detected_boxes[:, 1], \
                                         tmp_detected_boxes[:, 2], tmp_detected_boxes[:, 3]

                resized_h, resized_w = resized_img.shape[1], resized_img.shape[2]

                xmin = xmin * raw_w / resized_w
                xmax = xmax * raw_w / resized_w

                ymin = ymin * raw_h / resized_h
                ymax = ymax * raw_h / resized_h

                resize_boxes = np.transpose(np.stack([xmin, ymin, xmax, ymax]))

                detected_scores_.append(tmp_detected_scores)
                detected_boxes_.append(resize_boxes)
                detected_categories_.append(tmp_detected_categories)

            detected_scores_ = np.concatenate(detected_scores_)
            detected_boxes_ = np.concatenate(detected_boxes_)
            detected_categories_ = np.concatenate(detected_categories_)

            detected_scores, detected_boxes, detected_categories = [], [], []

            for sub_class in range(1, cfgs.CLASS_NUM + 1):
                index = np.where(detected_categories_ == sub_class)[0]
                if len(index) == 0:
                    continue
                tmp_boxes_h = detected_boxes_[index]
                tmp_label_h = detected_categories_[index]
                tmp_score_h = detected_scores_[index]

                tmp_boxes_h = np.array(tmp_boxes_h)
                tmp = np.zeros([tmp_boxes_h.shape[0], tmp_boxes_h.shape[1] + 1])
                tmp[:, 0:-1] = tmp_boxes_h
                tmp[:, -1] = np.array(tmp_score_h)

                inx = nms.py_cpu_nms(dets=np.array(tmp, np.float32),
                                     thresh=cfgs.FAST_RCNN_NMS_IOU_THRESHOLD,
                                     max_output_size=500)

                detected_boxes.extend(np.array(tmp_boxes_h)[inx])
                detected_scores.extend(np.array(tmp_score_h)[inx])
                detected_categories.extend(np.array(tmp_label_h)[inx])

            detected_scores = np.array(detected_scores)
            detected_boxes = np.array(detected_boxes)
            detected_categories = np.array(detected_categories)

            # print("{} cost time : {} ".format(img_name, (end - start)))
            if draw_imgs:
                show_indices = detected_scores >= cfgs.SHOW_SCORE_THRSHOLD
                show_scores = detected_scores[show_indices]
                show_boxes = detected_boxes[show_indices]
                show_categories = detected_categories[show_indices]

                # if cfgs.NET_NAME in ['resnet101_v1d', 'resnet50_v1d']:
                #     draw_img = (raw_img * np.array(cfgs.PIXEL_STD) + np.array(cfgs.PIXEL_MEAN_)) * 255
                # else:
                #     draw_img = raw_img + np.array(cfgs.PIXEL_MEAN)

                # draw_img = draw_img * (np.array(cfgs.PIXEL_STD)*255) + np.array(cfgs.PIXEL_MEAN)

                raw_img = np.array(raw_img, np.float32)
                final_detections = draw_box_in_img.draw_boxes_with_label_and_scores(raw_img,
                                                                                    boxes=show_boxes,
                                                                                    labels=show_categories,
                                                                                    scores=show_scores,
                                                                                    in_graph=False)
                if not os.path.exists(cfgs.TEST_SAVE_PATH):
                    os.makedirs(cfgs.TEST_SAVE_PATH)

                cv2.imwrite(cfgs.TEST_SAVE_PATH + '/' + record['ID'],
                            final_detections)

            # cost much time
            for j, box in enumerate(detected_boxes):
                coco_det.append({'bbox': [float(box[0]), float(box[1]), float(box[2]-box[0]), float(box[3]-box[1])],
                                 'score': float(detected_scores[j]), 'image_id': int(record['ID'].split('.jpg')[0].split('_000000')[-1]),
                                 'category_id': int(classes_originID[LABEl_NAME_MAP[detected_categories[j]]])})
            end = time.time()
            tools.view_bar('%s image cost %.3fs' % (record['ID'], (end - start)), i + 1, len(real_test_img_list))

        json.dump(coco_det, fw_json_dt)
        fw_json_dt.close()
        return os.path.join(save_path, 'coco_minival_ms.json')
Exemplo n.º 9
0
def detect(det_net, inference_save_path, real_test_imgname_list):

    # 1. preprocess img
    img_plac = tf.placeholder(dtype=tf.uint8, shape=[None, None,
                                                     3])  # is RGB. not GBR
    img_batch = tf.cast(img_plac, tf.float32)
    img_batch = short_side_resize_for_inference_data(
        img_tensor=img_batch,
        target_shortside_len=cfgs.IMG_SHORT_SIDE_LEN,
        length_limitation=cfgs.IMG_MAX_LENGTH)

    if cfgs.NET_NAME in ['resnet101_v1d', 'resnet50_v1d']:
        img_batch = (img_batch / 255 - tf.constant(
            cfgs.PIXEL_MEAN_)) / tf.constant(cfgs.PIXEL_STD)
    else:
        img_batch = img_batch - tf.constant(cfgs.PIXEL_MEAN)
    img_batch = tf.expand_dims(img_batch, axis=0)  # [1, None, None, 3]

    detection_boxes, detection_scores, detection_category = det_net.build_whole_detection_network(
        input_img_batch=img_batch, gtboxes_batch=None)

    init_op = tf.group(tf.global_variables_initializer(),
                       tf.local_variables_initializer())

    restorer, restore_ckpt = det_net.get_restorer()

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
        sess.run(init_op)
        if not restorer is None:
            restorer.restore(sess, restore_ckpt)
            print('restore model')

        for i, a_img_name in enumerate(real_test_imgname_list):

            raw_img = cv2.imread(a_img_name)
            start = time.time()
            resized_img, detected_boxes, detected_scores, detected_categories = \
                sess.run(
                    [img_batch, detection_boxes, detection_scores, detection_category],
                    feed_dict={img_plac: raw_img[:, :, ::-1]}
                )
            end = time.time()
            # print("{} cost time : {} ".format(img_name, (end - start)))

            raw_h, raw_w = raw_img.shape[0], raw_img.shape[1]

            xmin, ymin, xmax, ymax = detected_boxes[:, 0], detected_boxes[:, 1], \
                                     detected_boxes[:, 2], detected_boxes[:, 3]

            resized_h, resized_w = resized_img.shape[1], resized_img.shape[2]

            xmin = xmin * raw_w / resized_w
            xmax = xmax * raw_w / resized_w

            ymin = ymin * raw_h / resized_h
            ymax = ymax * raw_h / resized_h

            detected_boxes = np.transpose(np.stack([xmin, ymin, xmax, ymax]))

            show_indices = detected_scores >= cfgs.SHOW_SCORE_THRSHOLD
            show_scores = detected_scores[show_indices]
            show_boxes = detected_boxes[show_indices]
            show_categories = detected_categories[show_indices]

            # if cfgs.NET_NAME in ['resnet101_v1d', 'resnet50_v1d']:
            #     raw_img = (raw_img / 255 - np.array(cfgs.PIXEL_MEAN_)) /np.array(cfgs.PIXEL_STD)
            # else:
            #     raw_img = raw_img - np.array(cfgs.PIXEL_MEAN)
            final_detections = draw_box_in_img.draw_boxes_with_label_and_scores(
                raw_img,
                boxes=show_boxes,
                labels=show_categories,
                scores=show_scores,
                in_graph=False)
            nake_name = a_img_name.split('/')[-1]
            # print (inference_save_path + '/' + nake_name)
            cv2.imwrite(inference_save_path + '/' + nake_name,
                        final_detections[:, :, ::-1])

            tools.view_bar(
                '{} image cost {}s'.format(a_img_name, (end - start)), i + 1,
                len(real_test_imgname_list))
Exemplo n.º 10
0
def eval_with_plac(det_net, real_test_imgname_list, img_root, draw_imgs=False):

    # 1. preprocess img
    img_plac = tf.placeholder(dtype=tf.uint8, shape=[None, None, 3])  # is RGB. not BGR
    img_batch = tf.cast(img_plac, tf.float32)

    img_batch = short_side_resize_for_inference_data(img_tensor=img_batch,
                                                     target_shortside_len=cfgs.IMG_SHORT_SIDE_LEN,
                                                     length_limitation=cfgs.IMG_MAX_LENGTH)
    if cfgs.NET_NAME in ['resnet101_v1d', 'resnet50_v1d']:
        img_batch = (img_batch / 255 - tf.constant(cfgs.PIXEL_MEAN_)) / tf.constant(cfgs.PIXEL_STD)
    else:
        img_batch = img_batch - tf.constant(cfgs.PIXEL_MEAN)

    # img_batch = (img_batch - tf.constant(cfgs.PIXEL_MEAN)) / (tf.constant(cfgs.PIXEL_STD)*255)
    img_batch = tf.expand_dims(img_batch, axis=0)

    detection_boxes, detection_scores, detection_category = det_net.build_whole_detection_network(
        input_img_batch=img_batch,
        gtboxes_batch=None)

    init_op = tf.group(
        tf.global_variables_initializer(),
        tf.local_variables_initializer()
    )

    restorer, restore_ckpt = det_net.get_restorer()

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
        sess.run(init_op)
        if not restorer is None:
            restorer.restore(sess, restore_ckpt)
            print('restore model')

        for i, a_img_name in enumerate(real_test_imgname_list):

            raw_img = cv2.imread(os.path.join(img_root, a_img_name))
            raw_h, raw_w = raw_img.shape[0], raw_img.shape[1]

            start = time.time()
            resized_img, detected_boxes, detected_scores, detected_categories = \
                sess.run(
                    [img_batch, detection_boxes, detection_scores, detection_category],
                    feed_dict={img_plac: raw_img[:, :, ::-1]}  # cv is BGR. But need RGB
                )
            end = time.time()
            # print("{} cost time : {} ".format(img_name, (end - start)))
            if draw_imgs:
                show_indices = detected_scores >= cfgs.SHOW_SCORE_THRSHOLD
                show_scores = detected_scores[show_indices]
                show_boxes = detected_boxes[show_indices]
                show_categories = detected_categories[show_indices]

                draw_img = np.squeeze(resized_img, 0)
                if cfgs.NET_NAME in ['resnet101_v1d', 'resnet50_v1d']:
                    draw_img = (draw_img * np.array(cfgs.PIXEL_STD) + np.array(cfgs.PIXEL_MEAN_)) * 255
                else:
                    draw_img = draw_img + np.array(cfgs.PIXEL_MEAN)

                # draw_img = draw_img * (np.array(cfgs.PIXEL_STD)*255) + np.array(cfgs.PIXEL_MEAN)

                final_detections = draw_box_in_img.draw_boxes_with_label_and_scores(draw_img,
                                                                                    boxes=show_boxes,
                                                                                    labels=show_categories,
                                                                                    scores=show_scores,
                                                                                    in_graph=False)
                if not os.path.exists(cfgs.TEST_SAVE_PATH):
                    os.makedirs(cfgs.TEST_SAVE_PATH)

                cv2.imwrite(cfgs.TEST_SAVE_PATH + '/' + a_img_name,
                            final_detections[:, :, ::-1])

            xmin, ymin, xmax, ymax = detected_boxes[:, 0], detected_boxes[:, 1], \
                                     detected_boxes[:, 2], detected_boxes[:, 3]

            resized_h, resized_w = resized_img.shape[1], resized_img.shape[2]

            xmin = xmin * raw_w / resized_w
            xmax = xmax * raw_w / resized_w

            ymin = ymin * raw_h / resized_h
            ymax = ymax * raw_h / resized_h

            boxes = np.transpose(np.stack([xmin, ymin, xmax, ymax]))
            dets = np.hstack((detected_categories.reshape(-1, 1),
                              detected_scores.reshape(-1, 1),
                              boxes))
            # all_boxes.append(dets)

            # eval txt
            CLASS_VOC = NAME_LABEL_MAP.keys()

            write_handle = {}
            txt_dir = os.path.join('voc2012_eval', cfgs.VERSION, 'results', 'VOC2012', 'Main')
            tools.mkdir(txt_dir)
            for sub_class in CLASS_VOC:
                if sub_class == 'back_ground':
                    continue
                write_handle[sub_class] = open(os.path.join(txt_dir, 'comp3_det_test_%s.txt' % sub_class), 'a+')

            for det in dets:
                command = '%s %.6f %.6f %.6f %.6f %.6f\n' % (a_img_name.split('/')[-1].split('.')[0],
                                                             det[1],
                                                             det[2], det[3], det[4], det[5])
                write_handle[LABEl_NAME_MAP[det[0]]].write(command)

            for sub_class in CLASS_VOC:
                if sub_class == 'back_ground':
                    continue
                write_handle[sub_class].close()

            tools.view_bar('%s image cost %.3fs' % (a_img_name, (end - start)), i + 1, len(real_test_imgname_list))
Exemplo n.º 11
0
def eval_with_plac(det_net, imgId_list, coco, out_json_root, draw_imgs=False):

    # 1. preprocess img
    img_plac = tf.placeholder(dtype=tf.uint8, shape=[None, None,
                                                     3])  # is RGB. not GBR
    img_batch = tf.cast(img_plac, tf.float32)

    img_batch = short_side_resize_for_inference_data(
        img_tensor=img_batch,
        target_shortside_len=cfgs.IMG_SHORT_SIDE_LEN,
        length_limitation=cfgs.IMG_MAX_LENGTH)
    if cfgs.NET_NAME in ['resnet152_v1d', 'resnet101_v1d', 'resnet50_v1d']:
        img_batch = (img_batch / 255 - tf.constant(
            cfgs.PIXEL_MEAN_)) / tf.constant(cfgs.PIXEL_STD)
    else:
        img_batch = img_batch - tf.constant(cfgs.PIXEL_MEAN)
    img_batch = tf.expand_dims(img_batch, axis=0)

    detection_boxes, detection_scores, detection_category = det_net.build_whole_detection_network(
        input_img_batch=img_batch, gtboxes_batch=None)

    init_op = tf.group(tf.global_variables_initializer(),
                       tf.local_variables_initializer())

    restorer, restore_ckpt = det_net.get_restorer()

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    # coco_test_results = []

    with tf.Session(config=config) as sess:
        sess.run(init_op)
        if not restorer is None:
            restorer.restore(sess, restore_ckpt)
            print('restore model')

        for i, imgid in enumerate(imgId_list):
            imgname = coco.loadImgs(ids=[imgid])[0]['file_name']
            raw_img = cv2.imread(
                os.path.join("/home/yjr/DataSet/COCO/2017/test2017", imgname))

            raw_h, raw_w = raw_img.shape[0], raw_img.shape[1]
            start = time.time()
            resized_img, detected_boxes, detected_scores, detected_categories = \
                sess.run(
                    [img_batch, detection_boxes, detection_scores, detection_category],
                    feed_dict={img_plac: raw_img[:, :, ::-1]}  # cv is BGR. But need RGB
                )
            end = time.time()

            if draw_imgs:
                show_indices = detected_scores >= cfgs.VIS_SCORE
                show_scores = detected_scores[show_indices]
                show_boxes = detected_boxes[show_indices]
                show_categories = detected_categories[show_indices]

                draw_img = np.squeeze(resized_img, 0)

                if cfgs.NET_NAME in [
                        'resnet152_v1d', 'resnet101_v1d', 'resnet50_v1d'
                ]:
                    draw_img = (draw_img * np.array(cfgs.PIXEL_STD) +
                                np.array(cfgs.PIXEL_MEAN_)) * 255
                else:
                    draw_img = draw_img + np.array(cfgs.PIXEL_MEAN)
                final_detections = draw_box_in_img.draw_boxes_with_label_and_scores(
                    draw_img,
                    boxes=show_boxes,
                    labels=show_categories,
                    scores=show_scores,
                    in_graph=False)
                cv2.imwrite(cfgs.TEST_SAVE_PATH + '/' + str(imgid) + '.jpg',
                            final_detections[:, :, ::-1])

            xmin, ymin, xmax, ymax = detected_boxes[:, 0], detected_boxes[:, 1], \
                                     detected_boxes[:, 2], detected_boxes[:, 3]

            resized_h, resized_w = resized_img.shape[1], resized_img.shape[2]

            xmin = xmin * raw_w / resized_w
            xmax = xmax * raw_w / resized_w

            ymin = ymin * raw_h / resized_h
            ymax = ymax * raw_h / resized_h

            boxes = np.transpose(
                np.stack([xmin, ymin, xmax - xmin, ymax - ymin]))

            dets = np.hstack((detected_categories.reshape(-1, 1),
                              detected_scores.reshape(-1, 1), boxes))

            a_img_detect_result = []
            for a_det in dets:
                label, score, bbox = a_det[0], a_det[1], a_det[2:]
                cat_id = classes_originID[LABEL_NAME_MAP[label]]
                if score < 0.00001:
                    continue
                det_object = {
                    "image_id": imgid,
                    "category_id": cat_id,
                    "bbox": bbox.tolist(),
                    "score": float(score)
                }
                # print (det_object)
                a_img_detect_result.append(det_object)
            f = open(
                os.path.join(out_json_root, 'each_img',
                             str(imgid) + '.json'), 'w')
            json.dump(a_img_detect_result, f)  # , indent=4
            f.close()
            del a_img_detect_result
            del dets
            del boxes
            del resized_img
            del raw_img
            tools.view_bar('{} image cost {}s'.format(imgid, (end - start)),
                           i + 1, len(imgId_list))
Exemplo n.º 12
0
def detect(det_net, inference_save_path, rgb_real_test_imgname_list, ir_real_test_imgname_list):

    # 1. preprocess img
    rgb_img_plac = tf.placeholder(tf.uint8, [None, None, 3], 'rgb')  # is RGB. not GBR
    rgb_img_batch = tf.cast(rgb_img_plac, tf.float32)
    rgb_img_batch = short_side_resize_for_inference_data(img_tensor=rgb_img_batch,
                                                     target_shortside_len=cfgs.IMG_SHORT_SIDE_LEN,
                                                     length_limitation=cfgs.IMG_MAX_LENGTH)
    ir_img_plac = tf.placeholder(tf.uint8, [None, None, 3], 'ir')  # is RGB. not GBR
    ir_img_batch = tf.cast(ir_img_plac, tf.float32)
    ir_img_batch = short_side_resize_for_inference_data(img_tensor=ir_img_batch,
                                                     target_shortside_len=cfgs.IMG_SHORT_SIDE_LEN,
                                                     length_limitation=cfgs.IMG_MAX_LENGTH)
    rgb_img_batch = rgb_img_batch - tf.constant(cfgs.RGB_PIXEL_MEAN)
    ir_img_batch = ir_img_batch - tf.constant(cfgs.IR_PIXEL_MEAN)
    #img_batch = (img_batch - tf.constant(cfgs.PIXEL_MEAN)) / (tf.constant(cfgs.PIXEL_STD)*255)
    rgb_img_batch = tf.expand_dims(rgb_img_batch, axis=0) # [1, None, None, 3]
    ir_img_batch = tf.expand_dims(ir_img_batch, axis=0) # [1, None, None, 3]

    detection_boxes, detection_scores, detection_category = det_net.build_whole_detection_network(
        rgb_input_img_batch=rgb_img_batch, ir_input_img_batch=ir_img_batch, seg_mask_batch = None,
        gtboxes_batch=None)

    init_op = tf.group(
        tf.global_variables_initializer(),
        tf.local_variables_initializer()
    )

    restorer, restore_ckpt, model_variables = det_net.get_restorer_test()
    print(restore_ckpt)
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    
    with tf.Session(config=config) as sess:
        sess.run(init_op)
        if not restorer is None:
            restorer.restore(sess, restore_ckpt)
            print('restore model')

        for i, rgb_img_name in enumerate(rgb_real_test_imgname_list):

            rgb_raw_img = cv2.imread(rgb_img_name)[:, :, ::-1]
            ir_raw_img = cv2.imread(ir_real_test_imgname_list[i])[:, :, ::-1]
            start = time.time()
            rgb_resized_img, ir_resized_img, detected_boxes, detected_scores, detected_categories = \
                sess.run(
                    [rgb_img_batch, ir_img_batch, detection_boxes, detection_scores, detection_category],
                    feed_dict={rgb_img_plac: rgb_raw_img, ir_img_plac: ir_raw_img}  
                )
            end = time.time()
            # print("{} cost time : {} ".format(img_name, (end - start)))

            raw_h, raw_w = ir_raw_img.shape[0], rgb_raw_img.shape[1]

            xmin, ymin, xmax, ymax = detected_boxes[:, 0], detected_boxes[:, 1], \
                                     detected_boxes[:, 2], detected_boxes[:, 3]

            resized_h, resized_w = rgb_resized_img.shape[1], ir_resized_img.shape[2]

            xmin = xmin * raw_w / resized_w
            xmax = xmax * raw_w / resized_w

            ymin = ymin * raw_h / resized_h
            ymax = ymax * raw_h / resized_h

            detected_boxes = np.transpose(np.stack([xmin, ymin, xmax, ymax]))

            show_indices = detected_scores >= cfgs.SHOW_SCORE_THRSHOLD
            show_scores = detected_scores[show_indices]
            show_boxes = detected_boxes[show_indices]
            show_categories = detected_categories[show_indices]

            nake_name = rgb_img_name.split('/')[-1]
            f1  = open(inference_save_path + '/txt/' + nake_name.split('.')[0]+'.txt', 'w')
            final_detections = draw_box_in_img.draw_boxes_with_label_and_scores(rgb_raw_img - np.array(cfgs.RGB_PIXEL_MEAN),
                                                                                boxes=show_boxes,
                                                                                labels=show_categories,
                                                                                scores=show_scores, txt_file=f1, 
                                                                                img_name=nake_name.split('.')[0])
            # print (inference_save_path + '/' + nake_name)
            cv2.imwrite(inference_save_path + '/img/' + nake_name,
                        final_detections[:, :, ::-1])

            tools.view_bar('{} image cost {}s'.format(rgb_img_name, (end - start)), i + 1, len(ir_real_test_imgname_list))
Exemplo n.º 13
0
def eval_dict_convert(img_num, mode):
    with tf.Graph().as_default():

        # img = tf.placeholder(shape=[None, None, 3], dtype=tf.uint8)

        img_name_batch, img_batch, gtboxes_and_label_batch, num_objects_batch = \
            next_batch(dataset_name=cfgs.DATASET_NAME,
                       batch_size=cfgs.BATCH_SIZE,
                       shortside_len=cfgs.SHORT_SIDE_LEN,
                       is_training=False)

        gtboxes_and_label = tf.py_func(
            back_forward_convert,
            inp=[tf.squeeze(gtboxes_and_label_batch, 0)],
            Tout=tf.float32)
        gtboxes_and_label = tf.reshape(gtboxes_and_label, [-1, 6])

        gtboxes_and_label_minAreaRectangle = get_horizon_minAreaRectangle(
            gtboxes_and_label)

        gtboxes_and_label_minAreaRectangle = tf.reshape(
            gtboxes_and_label_minAreaRectangle, [-1, 5])

        # ***********************************************************************************************
        # *                                         share net                                           *
        # ***********************************************************************************************
        _, share_net = get_network_byname(net_name=cfgs.NET_NAME,
                                          inputs=img_batch,
                                          num_classes=None,
                                          is_training=True,
                                          output_stride=None,
                                          global_pool=False,
                                          spatial_squeeze=False)
        # ***********************************************************************************************
        # *                                            RPN                                              *
        # ***********************************************************************************************
        rpn = build_rpn.RPN(
            net_name=cfgs.NET_NAME,
            inputs=img_batch,
            gtboxes_and_label=gtboxes_and_label,
            is_training=False,
            share_head=False,
            share_net=share_net,
            anchor_ratios=cfgs.ANCHOR_RATIOS,
            anchor_scales=cfgs.ANCHOR_SCALES,
            anchor_angles=cfgs.ANCHOR_ANGLES,
            scale_factors=cfgs.SCALE_FACTORS,
            base_anchor_size_list=cfgs.
            BASE_ANCHOR_SIZE_LIST,  # P2, P3, P4, P5, P6
            level=cfgs.LEVEL,
            anchor_stride=cfgs.ANCHOR_STRIDE,
            top_k_nms=cfgs.RPN_TOP_K_NMS,
            kernel_size=cfgs.KERNEL_SIZE,
            use_angles_condition=False,
            anchor_angle_threshold=cfgs.RPN_ANCHOR_ANGLES_THRESHOLD,
            nms_angle_threshold=cfgs.RPN_NMS_ANGLES_THRESHOLD,
            rpn_nms_iou_threshold=cfgs.RPN_NMS_IOU_THRESHOLD,
            max_proposals_num=cfgs.MAX_PROPOSAL_NUM,
            rpn_iou_positive_threshold=cfgs.RPN_IOU_POSITIVE_THRESHOLD,
            rpn_iou_negative_threshold=cfgs.RPN_IOU_NEGATIVE_THRESHOLD,
            # iou>=0.7 is positive box, iou< 0.3 is negative
            rpn_mini_batch_size=cfgs.RPN_MINIBATCH_SIZE,
            rpn_positives_ratio=cfgs.RPN_POSITIVE_RATE,
            remove_outside_anchors=cfgs.
            IS_FILTER_OUTSIDE_BOXES,  # whether remove anchors outside
            rpn_weight_decay=cfgs.WEIGHT_DECAY[cfgs.NET_NAME],
            scope='')

        rpn_proposals_boxes, rpn_proposals_scores = rpn.rpn_proposals(
        )  # rpn_score shape: [300, ]
        _, _, rpn_predict_boxes, rpn_predict_scores = rpn.rpn_losses()

        # ***********************************************************************************************
        # *                                         Fast RCNN                                           *
        # ***********************************************************************************************
        fast_rcnn = build_fast_rcnn.FastRCNN(
            img_batch=img_batch,
            feature_pyramid=rpn.feature_pyramid,
            rpn_proposals_boxes=rpn_proposals_boxes,
            rpn_proposals_scores=rpn_proposals_scores,
            stop_gradient_for_proposals=False,
            img_shape=tf.shape(img_batch),
            roi_size=cfgs.ROI_SIZE,
            roi_pool_kernel_size=cfgs.ROI_POOL_KERNEL_SIZE,
            scale_factors=cfgs.SCALE_FACTORS,
            gtboxes_and_label=None,
            fast_rcnn_nms_iou_threshold=cfgs.FAST_RCNN_NMS_IOU_THRESHOLD,
            top_k_nms=cfgs.FAST_RCNN_TOP_K_NMS,
            nms_angle_threshold=cfgs.FAST_RCNN_NMS_ANGLES_THRESHOLD,
            use_angle_condition=False,
            level=cfgs.LEVEL,
            fast_rcnn_maximum_boxes_per_img=100,
            fast_rcnn_nms_max_boxes_per_class=cfgs.
            FAST_RCNN_NMS_MAX_BOXES_PER_CLASS,
            show_detections_score_threshold=cfgs.FINAL_SCORE_THRESHOLD,
            # show detections which score >= 0.6
            num_classes=cfgs.CLASS_NUM,
            fast_rcnn_minibatch_size=cfgs.FAST_RCNN_MINIBATCH_SIZE,
            fast_rcnn_positives_ratio=cfgs.FAST_RCNN_POSITIVE_RATE,
            fast_rcnn_positives_iou_threshold=cfgs.
            FAST_RCNN_IOU_POSITIVE_THRESHOLD,
            boxes_angle_threshold=cfgs.FAST_RCNN_BOXES_ANGLES_THRESHOLD,
            use_dropout=cfgs.USE_DROPOUT,
            weight_decay=cfgs.WEIGHT_DECAY[cfgs.NET_NAME],
            is_training=False)

        fast_rcnn_decode_boxes, fast_rcnn_score, num_of_objects, detection_category = \
            fast_rcnn.fast_rcnn_predict()

        ##############################################################################################
        if cfgs.NEED_AUXILIARY:
            predict_boxes = tf.concat(
                [fast_rcnn_decode_boxes, rpn_predict_boxes], axis=0)
            predict_scores = tf.concat(
                [fast_rcnn_score, rpn_predict_scores - 0.2], axis=0)
            rpn_predict_label = tf.ones([
                tf.shape(rpn_predict_scores)[0],
            ], tf.int64)
            labels = tf.concat([detection_category, rpn_predict_label], axis=0)

            # valid_indices = nms_rotate.nms_rotate(decode_boxes=predict_boxes,
            #                                       scores=predict_scores,
            #                                       iou_threshold=0.15,
            #                                       max_output_size=30,
            #                                       use_angle_condition=False,
            #                                       angle_threshold=15,
            #                                       use_gpu=True)
            valid_indices = tf.py_func(nms_rotate.nms_rotate_cpu,
                                       inp=[
                                           predict_boxes, predict_scores,
                                           tf.constant(0.15, tf.float32),
                                           tf.constant(30, tf.float32)
                                       ],
                                       Tout=tf.int64)

            fast_rcnn_decode_boxes = tf.gather(predict_boxes, valid_indices)
            fast_rcnn_score = tf.gather(predict_scores, valid_indices)
            detection_category = tf.gather(labels, valid_indices)

        ##############################################################################################
        if mode == 0:
            fast_rcnn_decode_boxes = get_horizon_minAreaRectangle(
                fast_rcnn_decode_boxes, False)

        # train
        init_op = tf.group(tf.global_variables_initializer(),
                           tf.local_variables_initializer())

        restorer, restore_ckpt = restore_model.get_restorer()

        config = tf.ConfigProto()
        # config.gpu_options.per_process_gpu_memory_fraction = 0.5
        config.gpu_options.allow_growth = True
        with tf.Session(config=config) as sess:
            sess.run(init_op)
            if not restorer is None:
                restorer.restore(sess, restore_ckpt)
                print('restore model')

            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(sess, coord)

            gtboxes_dict = {}
            predict_dict = {}

            for i in range(img_num):

                start = time.time()

                _img_name_batch, _img_batch, _gtboxes_and_label, _fast_rcnn_decode_boxes, \
                _gtboxes_and_label_minAreaRectangle, _fast_rcnn_score, _detection_category \
                    = sess.run([img_name_batch, img_batch, gtboxes_and_label, fast_rcnn_decode_boxes,
                                gtboxes_and_label_minAreaRectangle, fast_rcnn_score, detection_category])
                end = time.time()

                # gtboxes convert dict
                gtboxes_dict[str(_img_name_batch[0])] = []
                predict_dict[str(_img_name_batch[0])] = []

                # for j, box in enumerate(_gtboxes_and_label):
                #     bbox_dict = {}
                #     bbox_dict['bbox'] = np.array(_gtboxes_and_label[j, :-1], np.float64)
                #     bbox_dict['name'] = LABEl_NAME_MAP[int(_gtboxes_and_label[j, -1])]
                #     gtbox_dict[str(_img_name_batch[0])].append(bbox_dict)
                #
                # for label in NAME_LABEL_MAP.keys():
                #     if label == 'back_ground':
                #         continue
                #     else:
                #         temp_dict = {}
                #         temp_dict['name'] = label
                #
                #         ind = np.where(_detection_category == NAME_LABEL_MAP[label])[0]
                #         temp_boxes = _fast_rcnn_decode_boxes[ind]
                #         temp_score = np.reshape(_fast_rcnn_score[ind], [-1, 1])
                #         temp_dict['bbox'] = np.array(np.concatenate([temp_boxes, temp_score], axis=1), np.float64)
                #         predict_dict[str(_img_name_batch[0])].append(temp_dict)

                if mode == 0:
                    gtboxes_list, predict_list = \
                        make_dict_packle(_gtboxes_and_label_minAreaRectangle, _fast_rcnn_decode_boxes,
                                         _fast_rcnn_score, _detection_category)
                else:
                    gtboxes_list, predict_list = \
                        make_dict_packle(_gtboxes_and_label, _fast_rcnn_decode_boxes,
                                         _fast_rcnn_score, _detection_category)

                gtboxes_dict[str(_img_name_batch[0])].extend(gtboxes_list)
                predict_dict[str(_img_name_batch[0])].extend(predict_list)

                view_bar(
                    '{} image cost {}s'.format(str(_img_name_batch[0]),
                                               (end - start)), i + 1, img_num)

            fw1 = open('gtboxes_dict.pkl', 'w')
            fw2 = open('predict_dict.pkl', 'w')
            pickle.dump(gtboxes_dict, fw1)
            pickle.dump(predict_dict, fw2)
            fw1.close()
            fw2.close()
            coord.request_stop()
            coord.join(threads)
Exemplo n.º 14
0
def eval_with_plac(img_dir, det_net, num_imgs, image_ext, draw_imgs,
                   test_annotation_path):

    # 1. preprocess img
    img_plac = tf.placeholder(dtype=tf.uint8, shape=[None, None,
                                                     3])  # is RGB. not GBR
    img_batch = tf.cast(img_plac, tf.float32)
    img_batch = img_batch - tf.constant(cfgs.PIXEL_MEAN)
    img_batch = short_side_resize_for_inference_data(
        img_tensor=img_batch,
        target_shortside_len=cfgs.IMG_SHORT_SIDE_LEN,
        is_resize=False)

    det_boxes_h, det_scores_h, det_category_h, \
    det_boxes_r, det_scores_r, det_category_r = det_net.build_whole_detection_network(
        input_img_batch=img_batch,
        gtboxes_h_batch=None, gtboxes_r_batch=None)

    init_op = tf.group(tf.global_variables_initializer(),
                       tf.local_variables_initializer())

    global_step_tensor = slim.get_or_create_global_step()

    eval_result = []
    last_checkpoint_name = None

    while True:

        restorer, restore_ckpt = det_net.get_restorer()
        #saver = tf.train.Saver(max_to_keep=10)
        start_time = time.time()

        model_path = os.path.splitext(os.path.basename(restore_ckpt))[0]
        if model_path == None:
            print("Wait for available checkpoint")
        elif last_checkpoint_name == model_path:
            print(
                "Already evaluated checkpoint {}, we will try evaluation in {} seconds"
                .format(model_path, EVAL_INTERVAL))
            #continue
        else:
            print('Last ckpt was {}, new ckpt is {}'.format(
                last_checkpoint_name, model_path))
            last_checkpoint_name = model_path

            config = tf.ConfigProto()
            config.gpu_options.allow_growth = True

            with tf.Session(config=config) as sess:
                sess.run(init_op)
                sess.run(global_step_tensor.initializer)
                if not restorer is None:
                    restorer.restore(sess, restore_ckpt)
                    print('restore model', restore_ckpt)

                global_stepnp = tf.train.global_step(sess, global_step_tensor)
                print('#########################', global_stepnp)

                all_boxes_h = []
                all_boxes_r = []
                imgs = os.listdir(img_dir)
                imgs_len = len(imgs)
                none_detected_image = []
                for i, a_img_name in enumerate(imgs[:]):
                    a_img_name = a_img_name.split(image_ext)[0]
                    image_name = a_img_name + image_ext
                    print('\n', a_img_name)

                    raw_img = cv2.imread(
                        os.path.join(img_dir, a_img_name + image_ext))
                    raw_h, raw_w = raw_img.shape[0], raw_img.shape[1]

                    start = time.time()
                    resized_img, det_boxes_h_, det_scores_h_, det_category_h_, \
                    det_boxes_r_, det_scores_r_, det_category_r_ = \
                        sess.run(
                            [img_batch, det_boxes_h, det_scores_h, det_category_h,
                             det_boxes_r, det_scores_r, det_category_r],
                            feed_dict={img_plac: raw_img}
                        )
                    end = time.time()
                    print("det category H : ", det_category_h_)
                    print("det category R : ", det_category_r_)
                    # print("{} cost time : {} ".format(img_name, (end - start)))
                    if draw_imgs:
                        det_detections_h = draw_box_in_img.draw_box_cv(
                            np.squeeze(resized_img, 0),
                            boxes=det_boxes_h_,
                            labels=det_category_h_,
                            scores=det_scores_h_)
                        det_detections_r = draw_box_in_img.draw_rotate_box_cv(
                            np.squeeze(resized_img, 0),
                            boxes=det_boxes_r_,
                            labels=det_category_r_,
                            scores=det_scores_r_)
                        save_dir = os.path.join(cfgs.TEST_SAVE_PATH,
                                                cfgs.VERSION)
                        tools.mkdir(save_dir)
                        cv2.imwrite(save_dir + '/' + a_img_name + '_h.jpg',
                                    det_detections_h[:, :, ::-1])
                        cv2.imwrite(save_dir + '/' + a_img_name + '_r.jpg',
                                    det_detections_r[:, :, ::-1])

                    xmin, ymin, xmax, ymax = det_boxes_h_[:, 0], det_boxes_h_[:, 1], \
                                     det_boxes_h_[:, 2], det_boxes_h_[:, 3]

                    if det_boxes_r_.shape[0] != 0:
                        #print('### Has box ###')
                        resized_h, resized_w = resized_img.shape[
                            1], resized_img.shape[2]
                        det_boxes_r_ = forward_convert(det_boxes_r_, False)
                        det_boxes_r_[:, 0::2] *= (raw_w / resized_w)
                        det_boxes_r_[:, 1::2] *= (raw_h / resized_h)
                        det_boxes_r_ = back_forward_convert(
                            det_boxes_r_, False)

                        x_c, y_c, w, h, theta = det_boxes_r_[:, 0], det_boxes_r_[:, 1], det_boxes_r_[:, 2], \
                                                det_boxes_r_[:, 3], det_boxes_r_[:, 4]

                        xmin = xmin * raw_w / resized_w
                        xmax = xmax * raw_w / resized_w
                        ymin = ymin * raw_h / resized_h
                        ymax = ymax * raw_h / resized_h

                        boxes_h = np.transpose(
                            np.stack([xmin, ymin, xmax, ymax]))
                        boxes_r = np.transpose(
                            np.stack([x_c, y_c, w, h, theta]))
                        dets_h = np.hstack((det_category_h_.reshape(-1, 1),
                                            det_scores_h_.reshape(-1,
                                                                  1), boxes_h))
                        dets_r = np.hstack((det_category_r_.reshape(-1, 1),
                                            det_scores_r_.reshape(-1,
                                                                  1), boxes_r))
                        all_boxes_h.append(dets_h)
                        all_boxes_r.append(dets_r)
                    else:
                        imgs.remove(image_name)
                        none_detected_image.append(image_name)
                        print('No detected')

                    tools.view_bar(
                        '{} image cost {}s'.format(a_img_name, (end - start)),
                        i + 1, imgs_len)

                fw1 = open(cfgs.VERSION + '_detections_h.pkl', 'wb')
                fw2 = open(cfgs.VERSION + '_detections_r.pkl', 'wb')
                pickle.dump(all_boxes_h, fw1)
                pickle.dump(all_boxes_r, fw2)

                # with open(cfgs.VERSION + '_detections_h.pkl', 'rb') as f1:
                #     all_boxes_h = pickle.load(f1, encoding='unicode')

                # print(10 * "###")
                # print(len(all_boxes_h))
                #
                # with open(cfgs.VERSION + '_detections_r.pkl', 'rb') as f2:
                #     all_boxes_r = pickle.load(f2, encoding='unicode')
                #
                #     print(len(all_boxes_r))

                # imgs = os.listdir(img_dir)
                real_test_imgname_list = [i.split(image_ext)[0] for i in imgs]

                print(10 * "**")
                print('horizon eval:')
                # print(len(all_boxes_h), len(all_boxes_r))
                # print(len(real_test_imgname_list))
                mAP_h, recall_h, precision_h, total_mAP_h, total_recall_h, total_precision_h = voc_eval.voc_evaluate_detections(
                    all_boxes=all_boxes_h,
                    test_imgid_list=real_test_imgname_list,
                    test_annotation_path=test_annotation_path)
                print('mAP_h: ', mAP_h)
                print('mRecall_h:', recall_h)
                print('mPrecision_h:', precision_h)
                print('total_mAP_h: ', total_mAP_h)
                print('total_recall_h_list:', total_recall_h)
                print('total_precision_h_list:', total_precision_h)

                print(10 * "**")
                print('rotation eval:')
                mAP_r, recall_r, precision_r, total_mAP_r, total_recall_r, total_precision_r = voc_eval_r.voc_evaluate_detections(
                    all_boxes=all_boxes_r,
                    test_imgid_list=real_test_imgname_list,
                    test_annotation_path=test_annotation_path)

                f1score_h_check = (1 + 1**2) * precision_h * recall_h / (
                    1**2 * precision_h + recall_h)
                f1score_h = calc_fscore(precision_h, recall_h, 1)

                f1score_r_check = (1 + 1**2) * precision_r * recall_r / (
                    1**2 * precision_r + recall_r)
                f1score_r = calc_fscore(precision_r, recall_r, 1)

                print(10 * '##')
                print('mAP_r:', mAP_r)
                print('mRecall_r:', recall_r)
                print('mPrecision_r:', precision_r)
                print('total_mAP_r_list: ', total_mAP_r)
                print('total_recall_r_list:', total_recall_r)
                print('total_precision_r_list:', total_precision_r)
                print('f1score_r:', f1score_r)

                summary_path = os.path.join(cfgs.SUMMARY_PATH,
                                            cfgs.VERSION + '/eval_0')
                tools.mkdir(summary_path)

                summary_writer = tf.summary.FileWriter(summary_path,
                                                       graph=sess.graph)

                mAP_h_summ = tf.Summary()
                mAP_h_summ.value.add(tag='EVAL_Global/mAP_h',
                                     simple_value=mAP_h)
                summary_writer.add_summary(mAP_h_summ, global_stepnp)

                mAP_r_summ = tf.Summary()
                mAP_r_summ.value.add(tag='EVAL_Global/mAP_r',
                                     simple_value=mAP_r)
                summary_writer.add_summary(mAP_r_summ, global_stepnp)

                mRecall_h_summ = tf.Summary()
                mRecall_h_summ.value.add(tag='EVAL_Global/Recall_h',
                                         simple_value=recall_h)
                summary_writer.add_summary(mRecall_h_summ, global_stepnp)

                mRecall_r_summ = tf.Summary()
                mRecall_r_summ.value.add(tag='EVAL_Global/Recall_r',
                                         simple_value=recall_r)
                summary_writer.add_summary(mRecall_r_summ, global_stepnp)

                mPrecision_h_summ = tf.Summary()
                mPrecision_h_summ.value.add(tag='EVAL_Global/Precision_h',
                                            simple_value=precision_h)
                summary_writer.add_summary(mPrecision_h_summ, global_stepnp)

                mPrecision_r_summ = tf.Summary()
                mPrecision_r_summ.value.add(tag='EVAL_Global/Precision_r',
                                            simple_value=precision_r)
                summary_writer.add_summary(mPrecision_r_summ, global_stepnp)

                mF1Score_h_summ = tf.Summary()
                mF1Score_h_summ.value.add(tag='EVAL_Global/F1Score_h',
                                          simple_value=f1score_h)
                summary_writer.add_summary(mF1Score_h_summ, global_stepnp)

                mF1Score_r_summ = tf.Summary()
                mF1Score_r_summ.value.add(tag='EVAL_Global/F1Score_r',
                                          simple_value=f1score_r)
                summary_writer.add_summary(mF1Score_r_summ, global_stepnp)

                mAP_h_class_dict = {}
                mAP_r_class_dict = {}
                recall_h_class_dict = {}
                recall_r_class_dict = {}
                precision_h_class_dict = {}
                precision_r_class_dict = {}
                f1score_h_class_dict = {}
                f1score_r_class_dict = {}

                label_list = list(NAME_LABEL_MAP.keys())
                label_list.remove('back_ground')

                for cls in label_list:
                    mAP_h_class_dict["cls_%s_mAP_h_summ" % cls] = tf.Summary()
                    mAP_r_class_dict["cls_%s_mAP_r_summ" % cls] = tf.Summary()
                    recall_h_class_dict["cls_%s_recall_h_summ" %
                                        cls] = tf.Summary()
                    recall_r_class_dict["cls_%s_recall_r_summ" %
                                        cls] = tf.Summary()
                    precision_h_class_dict["cls_%s_precision_h_summ" %
                                           cls] = tf.Summary()
                    precision_r_class_dict["cls_%s_precision_r_summ" %
                                           cls] = tf.Summary()
                    f1score_h_class_dict["cls_%s_f1score_h_summ" %
                                         cls] = tf.Summary()
                    f1score_r_class_dict["cls_%s_f1score_r_summ" %
                                         cls] = tf.Summary()

                for cls in label_list:
                    mAP_h_class_dict["cls_%s_mAP_h_summ" % cls].value.add(
                        tag='EVAL_Class_mAP/{}_mAP_h'.format(cls),
                        simple_value=total_mAP_h[cls])
                    mAP_r_class_dict["cls_%s_mAP_r_summ" % cls].value.add(
                        tag='EVAL_Class_mAP/{}_mAP_r'.format(cls),
                        simple_value=total_mAP_r[cls])
                    recall_h_class_dict[
                        "cls_%s_recall_h_summ" % cls].value.add(
                            tag='EVAL_Class_recall/{}_recall_h'.format(cls),
                            simple_value=total_recall_h[cls])
                    recall_r_class_dict[
                        "cls_%s_recall_r_summ" % cls].value.add(
                            tag='EVAL_Class_recall/{}_recall_r'.format(cls),
                            simple_value=total_recall_r[cls])
                    precision_h_class_dict[
                        "cls_%s_precision_h_summ" % cls].value.add(
                            tag='EVAL_Class_precision/{}_precision_h'.format(
                                cls),
                            simple_value=total_precision_h[cls])
                    precision_r_class_dict[
                        "cls_%s_precision_r_summ" % cls].value.add(
                            tag='EVAL_Class_precision/{}_precision_r'.format(
                                cls),
                            simple_value=total_precision_r[cls])

                    f1score_h_cls = calc_fscore(total_precision_h[cls],
                                                total_recall_h[cls], 1)
                    f1score_r_cls = calc_fscore(total_precision_r[cls],
                                                total_recall_r[cls], 1)
                    f1score_h_class_dict[
                        "cls_%s_f1score_h_summ" % cls].value.add(
                            tag='EVAL_Class_f1score/{}_f1score_h'.format(cls),
                            simple_value=f1score_h_cls)
                    f1score_r_class_dict[
                        "cls_%s_f1score_r_summ" % cls].value.add(
                            tag='EVAL_Class_f1score/{}_f1score_r'.format(cls),
                            simple_value=f1score_r_cls)

                for cls in label_list:
                    summary_writer.add_summary(
                        mAP_h_class_dict["cls_%s_mAP_h_summ" % cls],
                        global_stepnp)
                    summary_writer.add_summary(
                        mAP_r_class_dict["cls_%s_mAP_r_summ" % cls],
                        global_stepnp)
                    summary_writer.add_summary(
                        recall_h_class_dict["cls_%s_recall_h_summ" % cls],
                        global_stepnp)
                    summary_writer.add_summary(
                        recall_r_class_dict["cls_%s_recall_r_summ" % cls],
                        global_stepnp)
                    summary_writer.add_summary(
                        precision_h_class_dict["cls_%s_precision_h_summ" %
                                               cls], global_stepnp)
                    summary_writer.add_summary(
                        precision_r_class_dict["cls_%s_precision_r_summ" %
                                               cls], global_stepnp)
                    summary_writer.add_summary(
                        f1score_h_class_dict["cls_%s_f1score_h_summ" % cls],
                        global_stepnp)
                    summary_writer.add_summary(
                        f1score_r_class_dict["cls_%s_f1score_r_summ" % cls],
                        global_stepnp)

                summary_writer.flush()

        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        save_ckpt = os.path.join(save_dir,
                                 'voc_' + str(global_stepnp) + 'model.ckpt')
        #saver.save(sess, save_ckpt)
        print(' weights had been saved')

        time_to_next_eval = start_time + EVAL_INTERVAL - time.time()
        if time_to_next_eval > 0:
            time.sleep(time_to_next_eval)
Exemplo n.º 15
0
def test(img_num):
    with tf.Graph().as_default():

        img_name_batch, img_batch, gtboxes_and_label_batch, num_objects_batch = \
            next_batch(dataset_name=cfgs.DATASET_NAME,
                       batch_size=cfgs.BATCH_SIZE,
                       shortside_len=cfgs.SHORT_SIDE_LEN,
                       is_training=False)

        gtboxes_and_label, head = get_head(
            tf.squeeze(gtboxes_and_label_batch, 0))
        gtboxes_and_label = tf.py_func(back_forward_convert,
                                       inp=[gtboxes_and_label],
                                       Tout=tf.float32)
        gtboxes_and_label = tf.reshape(gtboxes_and_label, [-1, 6])
        head_quadrant = tf.py_func(get_head_quadrant,
                                   inp=[head, gtboxes_and_label],
                                   Tout=tf.float32)
        head_quadrant = tf.reshape(head_quadrant, [-1, 1])

        gtboxes_and_label_minAreaRectangle = get_horizen_minAreaRectangle(
            gtboxes_and_label)

        gtboxes_and_label_minAreaRectangle = tf.reshape(
            gtboxes_and_label_minAreaRectangle, [-1, 5])

        # ***********************************************************************************************
        # *                                         share net                                           *
        # ***********************************************************************************************
        _, share_net = get_network_byname(net_name=cfgs.NET_NAME,
                                          inputs=img_batch,
                                          num_classes=None,
                                          is_training=True,
                                          output_stride=None,
                                          global_pool=False,
                                          spatial_squeeze=False)

        # ***********************************************************************************************
        # *                                            RPN                                              *
        # ***********************************************************************************************
        rpn = build_rpn.RPN(
            net_name=cfgs.NET_NAME,
            inputs=img_batch,
            gtboxes_and_label=None,
            is_training=False,
            share_head=cfgs.SHARE_HEAD,
            share_net=share_net,
            stride=cfgs.STRIDE,
            anchor_ratios=cfgs.ANCHOR_RATIOS,
            anchor_scales=cfgs.ANCHOR_SCALES,
            scale_factors=cfgs.SCALE_FACTORS,
            base_anchor_size_list=cfgs.
            BASE_ANCHOR_SIZE_LIST,  # P2, P3, P4, P5, P6
            level=cfgs.LEVEL,
            top_k_nms=cfgs.RPN_TOP_K_NMS,
            rpn_nms_iou_threshold=cfgs.RPN_NMS_IOU_THRESHOLD,
            max_proposals_num=cfgs.MAX_PROPOSAL_NUM,
            rpn_iou_positive_threshold=cfgs.RPN_IOU_POSITIVE_THRESHOLD,
            rpn_iou_negative_threshold=cfgs.RPN_IOU_NEGATIVE_THRESHOLD,
            rpn_mini_batch_size=cfgs.RPN_MINIBATCH_SIZE,
            rpn_positives_ratio=cfgs.RPN_POSITIVE_RATE,
            remove_outside_anchors=False,  # whether remove anchors outside
            rpn_weight_decay=cfgs.WEIGHT_DECAY[cfgs.NET_NAME])

        # rpn predict proposals
        rpn_proposals_boxes, rpn_proposals_scores = rpn.rpn_proposals(
        )  # rpn_score shape: [300, ]

        # ***********************************************************************************************
        # *                                         Fast RCNN                                           *
        # ***********************************************************************************************
        fast_rcnn = build_fast_rcnn.FastRCNN(
            feature_pyramid=rpn.feature_pyramid,
            rpn_proposals_boxes=rpn_proposals_boxes,
            rpn_proposals_scores=rpn_proposals_scores,
            img_shape=tf.shape(img_batch),
            img_batch=img_batch,
            roi_size=cfgs.ROI_SIZE,
            roi_pool_kernel_size=cfgs.ROI_POOL_KERNEL_SIZE,
            scale_factors=cfgs.SCALE_FACTORS,
            gtboxes_and_label=None,
            gtboxes_and_label_minAreaRectangle=
            gtboxes_and_label_minAreaRectangle,
            fast_rcnn_nms_iou_threshold=cfgs.FAST_RCNN_NMS_IOU_THRESHOLD,
            fast_rcnn_maximum_boxes_per_img=100,
            fast_rcnn_nms_max_boxes_per_class=cfgs.
            FAST_RCNN_NMS_MAX_BOXES_PER_CLASS,
            show_detections_score_threshold=cfgs.FINAL_SCORE_THRESHOLD,
            # show detections which score >= 0.6
            num_classes=cfgs.CLASS_NUM,
            fast_rcnn_minibatch_size=cfgs.FAST_RCNN_MINIBATCH_SIZE,
            fast_rcnn_positives_ratio=cfgs.FAST_RCNN_POSITIVE_RATE,
            fast_rcnn_positives_iou_threshold=cfgs.
            FAST_RCNN_IOU_POSITIVE_THRESHOLD,
            # iou>0.5 is positive, iou<0.5 is negative
            use_dropout=cfgs.USE_DROPOUT,
            weight_decay=cfgs.WEIGHT_DECAY[cfgs.NET_NAME],
            is_training=False,
            level=cfgs.LEVEL,
            head_quadrant=head_quadrant)

        fast_rcnn_decode_boxes, fast_rcnn_score, num_of_objects, detection_category, \
        fast_rcnn_decode_boxes_rotate, fast_rcnn_score_rotate, fast_rcnn_head_quadrant, \
        num_of_objects_rotate, detection_category_rotate = fast_rcnn.fast_rcnn_predict()

        # train
        init_op = tf.group(tf.global_variables_initializer(),
                           tf.local_variables_initializer())

        restorer, restore_ckpt = restore_model.get_restorer()

        config = tf.ConfigProto()
        # config.gpu_options.per_process_gpu_memory_fraction = 0.5
        config.gpu_options.allow_growth = True
        with tf.Session(config=config) as sess:
            sess.run(init_op)
            if not restorer is None:
                restorer.restore(sess, restore_ckpt)
                print('restore model')

            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(sess, coord)

            for i in range(img_num):

                start = time.time()

                _img_name_batch, _img_batch, _gtboxes_and_label, _gtboxes_and_label_minAreaRectangle, _head_quadrant,  \
                _fast_rcnn_decode_boxes, _fast_rcnn_score, _detection_category, _fast_rcnn_decode_boxes_rotate, \
                _fast_rcnn_score_rotate, _fast_rcnn_head_quadrant, _detection_category_rotate \
                    = sess.run([img_name_batch, img_batch, gtboxes_and_label, gtboxes_and_label_minAreaRectangle, head_quadrant,
                                fast_rcnn_decode_boxes, fast_rcnn_score, detection_category, fast_rcnn_decode_boxes_rotate,
                                fast_rcnn_score_rotate, fast_rcnn_head_quadrant, detection_category_rotate])
                end = time.time()

                _img_batch = np.squeeze(_img_batch, axis=0)

                _img_batch_fpn_horizonal = help_utils.draw_box_cv(
                    _img_batch,
                    boxes=_fast_rcnn_decode_boxes,
                    labels=_detection_category,
                    scores=_fast_rcnn_score)

                _img_batch_fpn_rotate = help_utils.draw_rotate_box_cv(
                    _img_batch,
                    boxes=_fast_rcnn_decode_boxes_rotate,
                    labels=_detection_category_rotate,
                    scores=_fast_rcnn_score_rotate,
                    head=np.argmax(_fast_rcnn_head_quadrant, axis=1))
                mkdir(cfgs.TEST_SAVE_PATH)
                cv2.imwrite(
                    cfgs.TEST_SAVE_PATH +
                    '/{}_horizontal_fpn.jpg'.format(str(_img_name_batch[0])),
                    _img_batch_fpn_horizonal)
                cv2.imwrite(
                    cfgs.TEST_SAVE_PATH +
                    '/{}_rotate_fpn.jpg'.format(str(_img_name_batch[0])),
                    _img_batch_fpn_rotate)

                temp_label_horizontal = np.reshape(_gtboxes_and_label[:, -1:],
                                                   [
                                                       -1,
                                                   ]).astype(np.int64)
                temp_label_rotate = np.reshape(_gtboxes_and_label[:, -1:], [
                    -1,
                ]).astype(np.int64)

                _img_batch_gt_horizontal = help_utils.draw_box_cv(
                    _img_batch,
                    boxes=_gtboxes_and_label_minAreaRectangle[:, :-1],
                    labels=temp_label_horizontal,
                    scores=None)

                _img_batch_gt_rotate = help_utils.draw_rotate_box_cv(
                    _img_batch,
                    boxes=_gtboxes_and_label[:, :-1],
                    labels=temp_label_rotate,
                    scores=None,
                    head=np.reshape(_head_quadrant, [
                        -1,
                    ]))

                cv2.imwrite(
                    cfgs.TEST_SAVE_PATH +
                    '/{}_horizontal_gt.jpg'.format(str(_img_name_batch[0])),
                    _img_batch_gt_horizontal)
                cv2.imwrite(
                    cfgs.TEST_SAVE_PATH +
                    '/{}_rotate_gt.jpg'.format(str(_img_name_batch[0])),
                    _img_batch_gt_rotate)

                view_bar(
                    '{} image cost {}s'.format(str(_img_name_batch[0]),
                                               (end - start)), i + 1, img_num)

            coord.request_stop()
            coord.join(threads)
Exemplo n.º 16
0
def eval_text(img_num, mode):
    with tf.Graph().as_default():

        faster_rcnn = build_whole_network.DetectionNetwork(
            base_network_name=cfgs.NET_NAME, is_training=False)
        # 通过readtfrecord来读取文件
        img_name_batch, img_batch, gtboxes_and_label_batch, num_objects_batch = \
            next_batch(dataset_name=cfgs.DATASET_NAME,
                       batch_size=cfgs.BATCH_SIZE,
                       shortside_len=cfgs.IMG_SHORT_SIDE_LEN,
                       is_training=False)

        gtboxes_and_label = tf.py_func(
            back_forward_convert,
            inp=[tf.squeeze(gtboxes_and_label_batch, 0)],
            Tout=tf.float32)
        gtboxes_and_label = tf.reshape(gtboxes_and_label, [-1, 6])

        gtboxes_and_label_minAreaRectangle = get_horizen_minAreaRectangle(
            gtboxes_and_label)

        gtboxes_and_label_minAreaRectangle = tf.reshape(
            gtboxes_and_label_minAreaRectangle, [-1, 5])

        final_boxes_h, final_scores_h, final_category_h, \
        final_boxes_r, final_scores_r, final_category_r= faster_rcnn.build_whole_detection_network(
            input_img_batch=img_batch,
            gtboxes_r_batch=gtboxes_and_label,
            gtboxes_h_batch=gtboxes_and_label_minAreaRectangle)

        if mode == 0:
            final_boxes_r = get_horizen_minAreaRectangle(final_boxes_r, False)

        # train
        init_op = tf.group(tf.global_variables_initializer(),
                           tf.local_variables_initializer())

        restorer, restore_ckpt = faster_rcnn.get_restorer()

        config = tf.ConfigProto()
        # config.gpu_options.per_process_gpu_memory_fraction = 0.5
        config.gpu_options.allow_growth = True
        with tf.Session(config=config) as sess:
            sess.run(init_op)
            if not restorer is None:
                restorer.restore(sess, restore_ckpt)
                print('restore model')

            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(sess, coord)

            gtboxes_horizontal_dict = {}
            predict_horizontal_dict = {}
            gtboxes_rotate_dict = {}
            predict_rotate_dict = {}

            for i in range(img_num):

                start = time.time()

                _img_name_batch, _img_batch, _gtboxes_and_label, _gtboxes_and_label_minAreaRectangle, \
                _final_boxes_h, _final_scores_h, _final_category_h, _final_boxes_r, \
                _final_scores_r, _final_category_r \
                    = sess.run([img_name_batch, img_batch, gtboxes_and_label, gtboxes_and_label_minAreaRectangle,
                                final_boxes_h, final_scores_h, final_category_h, final_boxes_r,
                                final_scores_r, final_category_r])
                end = time.time()

                # det_detections_h = draw_box_in_img.draw_box_cv(np.squeeze(_img_batch, 0),
                #                                               boxes=_final_boxes_h,
                #                                               labels=_final_category_h,
                #                                               scores=final_scores_h)
                # det_detections_r = draw_box_in_img.draw_rotate_box_cv(np.squeeze(_img_batch, 0),
                #                                                       boxes=_final_boxes_r,
                #                                                       labels=_final_category_r,
                #                                                       scores= _final_scores_r)
                # save_dir = os.path.join('/home/sws/code/Tfrecord/', cfgs.VERSION)
                # tools.mkdir(save_dir)
                # cv2.imwrite(save_dir + '/' + _img_name_batch[0] + '_h.jpg',
                #             det_detections_h)
                # cv2.imwrite(save_dir + '/' + _img_name_batch[0] + '_r.jpg',
                #             det_detections_r)

                # gtboxes convert dict
                gtboxes_horizontal_dict[str(_img_name_batch[0])] = []
                predict_horizontal_dict[str(_img_name_batch[0])] = []
                gtboxes_rotate_dict[str(_img_name_batch[0])] = []
                predict_rotate_dict[str(_img_name_batch[0])] = []

                gtbox_horizontal_list, predict_horizontal_list = \
                    make_dict_packle(_gtboxes_and_label_minAreaRectangle, _final_boxes_h,
                                     _final_scores_h, _final_category_h)

                # if mode == 0:
                #     gtbox_rotate_list, predict_rotate_list = \
                #         make_dict_packle(_gtboxes_and_label_minAreaRectangle, _fast_rcnn_decode_boxes_rotate,
                #                          _fast_rcnn_score_rotate, _detection_category_rotate)
                if mode == 0:
                    gtbox_rotate_list, predict_rotate_list = \
                        make_dict_packle(_gtboxes_and_label_minAreaRectangle, _final_boxes_r,
                                         _final_scores_r, _final_category_r)
                else:
                    gtbox_rotate_list, predict_rotate_list = \
                        make_dict_packle(_gtboxes_and_label, _final_boxes_r,
                                         _final_scores_r, _final_category_r)

                gtboxes_horizontal_dict[str(
                    _img_name_batch[0])].extend(gtbox_horizontal_list)
                predict_horizontal_dict[str(
                    _img_name_batch[0])].extend(predict_horizontal_list)
                gtboxes_rotate_dict[str(
                    _img_name_batch[0])].extend(gtbox_rotate_list)
                predict_rotate_dict[str(
                    _img_name_batch[0])].extend(predict_rotate_list)

                view_bar(
                    '{} image cost {}s'.format(str(_img_name_batch[0]),
                                               (end - start)), i + 1, img_num)
                print('\n')
            fw1 = open('gtboxes_horizontal_dict.pkl', 'w')
            fw2 = open('predict_horizontal_dict.pkl', 'w')
            fw3 = open('gtboxes_rotate_dict.pkl', 'w')
            fw4 = open('predict_rotate_dict.pkl', 'w')
            pickle.dump(gtboxes_horizontal_dict, fw1)
            pickle.dump(predict_horizontal_dict, fw2)
            pickle.dump(gtboxes_rotate_dict, fw3)
            pickle.dump(predict_rotate_dict, fw4)
            fw1.close()
            fw2.close()
            fw3.close()
            fw4.close()
            coord.request_stop()
            coord.join(threads)
Exemplo n.º 17
0
def test_coco(det_net, real_test_img_list, eval_data, draw_imgs=False):

    # 1. preprocess img
    img_plac = tf.placeholder(dtype=tf.uint8, shape=[None, None, 3])  # is RGB. not BGR
    img_batch = tf.cast(img_plac, tf.float32)

    img_batch = short_side_resize_for_inference_data(img_tensor=img_batch,
                                                     target_shortside_len=cfgs.IMG_SHORT_SIDE_LEN,
                                                     length_limitation=cfgs.IMG_MAX_LENGTH)
    if cfgs.NET_NAME in ['resnet101_v1d', 'resnet50_v1d']:
        img_batch = (img_batch / 255 - tf.constant(cfgs.PIXEL_MEAN_)) / tf.constant(cfgs.PIXEL_STD)
    else:
        img_batch = img_batch - tf.constant(cfgs.PIXEL_MEAN)

    # img_batch = (img_batch - tf.constant(cfgs.PIXEL_MEAN)) / (tf.constant(cfgs.PIXEL_STD)*255)
    img_batch = tf.expand_dims(img_batch, axis=0)

    detection_boxes, detection_scores, detection_category = det_net.build_whole_detection_network(
        input_img_batch=img_batch,
        gtboxes_batch=None)

    init_op = tf.group(
        tf.global_variables_initializer(),
        tf.local_variables_initializer()
    )

    restorer, restore_ckpt = det_net.get_restorer()

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
        sess.run(init_op)
        if not restorer is None:
            restorer.restore(sess, restore_ckpt)
            print('restore model')

        save_path = os.path.join('./eval_coco', cfgs.VERSION)
        tools.mkdir(save_path)
        fw_json_dt = open(os.path.join(save_path, 'coco_test-dev.json'), 'w')
        coco_det = []
        for i, a_img in enumerate(real_test_img_list):

            raw_img = cv2.imread(os.path.join(eval_data, a_img['file_name']))
            raw_h, raw_w = raw_img.shape[0], raw_img.shape[1]

            start = time.time()
            resized_img, detected_boxes, detected_scores, detected_categories = \
                sess.run(
                    [img_batch, detection_boxes, detection_scores, detection_category],
                    feed_dict={img_plac: raw_img[:, :, ::-1]}  # cv is BGR. But need RGB
                )
            end = time.time()

            eval_indices = detected_scores >= 0.01
            detected_scores = detected_scores[eval_indices]
            detected_boxes = detected_boxes[eval_indices]
            detected_categories = detected_categories[eval_indices]

            # print("{} cost time : {} ".format(img_name, (end - start)))
            if draw_imgs:
                show_indices = detected_scores >= cfgs.SHOW_SCORE_THRSHOLD
                show_scores = detected_scores[show_indices]
                show_boxes = detected_boxes[show_indices]
                show_categories = detected_categories[show_indices]

                draw_img = np.squeeze(resized_img, 0)
                if cfgs.NET_NAME in ['resnet101_v1d', 'resnet50_v1d']:
                    draw_img = (draw_img * np.array(cfgs.PIXEL_STD) + np.array(cfgs.PIXEL_MEAN_)) * 255
                else:
                    draw_img = draw_img + np.array(cfgs.PIXEL_MEAN)

                # draw_img = draw_img * (np.array(cfgs.PIXEL_STD)*255) + np.array(cfgs.PIXEL_MEAN)

                final_detections = draw_box_in_img.draw_boxes_with_label_and_scores(draw_img,
                                                                                    boxes=show_boxes,
                                                                                    labels=show_categories,
                                                                                    scores=show_scores,
                                                                                    in_graph=False)
                if not os.path.exists(cfgs.TEST_SAVE_PATH):
                    os.makedirs(cfgs.TEST_SAVE_PATH)

                cv2.imwrite(cfgs.TEST_SAVE_PATH + '/' + '{}.jpg'.format(a_img['id']),
                            final_detections[:, :, ::-1])

            xmin, ymin, xmax, ymax = detected_boxes[:, 0], detected_boxes[:, 1], \
                                     detected_boxes[:, 2], detected_boxes[:, 3]

            resized_h, resized_w = resized_img.shape[1], resized_img.shape[2]

            xmin = xmin * raw_w / resized_w
            xmax = xmax * raw_w / resized_w

            ymin = ymin * raw_h / resized_h
            ymax = ymax * raw_h / resized_h

            boxes = np.transpose(np.stack([xmin, ymin, xmax-xmin, ymax-ymin]))

            # cost much time
            for j, box in enumerate(boxes):
                coco_det.append({'bbox': [float(box[0]), float(box[1]), float(box[2]), float(box[3])],
                                 'score': float(detected_scores[j]), 'image_id': a_img['id'],
                                 'category_id': int(classes_originID[LABEl_NAME_MAP[detected_categories[j]]])})

            tools.view_bar('%s image cost %.3fs' % (a_img['id'], (end - start)), i + 1, len(real_test_img_list))

        json.dump(coco_det, fw_json_dt)
        fw_json_dt.close()
Exemplo n.º 18
0
def eval_with_plac(img_dir, det_net, num_imgs, image_ext, draw_imgs=False):

    # 1. preprocess img
    img_plac = tf.placeholder(dtype=tf.uint8, shape=[None, None, 3])  # is RGB. not GBR
    img_batch = tf.cast(img_plac, tf.float32)
    img_batch = img_batch - tf.constant(cfgs.PIXEL_MEAN)
    img_batch = short_side_resize_for_inference_data(img_tensor=img_batch,
                                                     target_shortside_len=cfgs.IMG_SHORT_SIDE_LEN,
                                                     is_resize=False)

    det_boxes_h, det_scores_h, det_category_h, \
    det_boxes_r, det_scores_r, det_category_r = det_net.build_whole_detection_network(
        input_img_batch=img_batch,
        gtboxes_h_batch=None, gtboxes_r_batch=None)

    init_op = tf.group(
        tf.global_variables_initializer(),
        tf.local_variables_initializer()
    )

    restorer, restore_ckpt = det_net.get_restorer()

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
        sess.run(init_op)
        if not restorer is None:
            restorer.restore(sess, restore_ckpt)
            print('restore model')

        all_boxes_r = []
        imgs = os.listdir(img_dir)
        for i, a_img_name in enumerate(imgs):
            a_img_name = a_img_name.split(image_ext)[0]

            raw_img = cv2.imread(os.path.join(img_dir,
                                              a_img_name + image_ext))
            raw_h, raw_w = raw_img.shape[0], raw_img.shape[1]

            start = time.time()
            resized_img, det_boxes_r_, det_scores_r_, det_category_r_ = \
                sess.run(
                    [img_batch, det_boxes_h, det_scores_h, det_category_h,
                     det_boxes_r, det_scores_r, det_category_r],
                    feed_dict={img_plac: raw_img}
                )
            end = time.time()
            # print("{} cost time : {} ".format(img_name, (end - start)))
            if draw_imgs:

                det_detections_r = draw_box_in_img.draw_rotate_box_cv(np.squeeze(resized_img, 0),
                                                                      boxes=det_boxes_r_,
                                                                      labels=det_category_r_,
                                                                      scores=det_scores_r_)
                save_dir = os.path.join(cfgs.TEST_SAVE_PATH, cfgs.VERSION)
                tools.mkdir(save_dir)

                cv2.imwrite(save_dir + '/' + a_img_name + '_r.jpg',
                            det_detections_r[:, :, ::-1])

            resized_h, resized_w = resized_img.shape[1], resized_img.shape[2]
            det_boxes_r_ = forward_convert(det_boxes_r_, False)
            det_boxes_r_[:, 0::2] *= (raw_w / resized_w)
            det_boxes_r_[:, 1::2] *= (raw_h / resized_h)
            det_boxes_r_ = back_forward_convert(det_boxes_r_, False)

            x_c, y_c, w, h, theta = det_boxes_r_[:, 0], det_boxes_r_[:, 1], det_boxes_r_[:, 2], \
                                    det_boxes_r_[:, 3], det_boxes_r_[:, 4]

            boxes_r = np.transpose(np.stack([x_c, y_c, w, h, theta]))

            dets_r = np.hstack((det_category_r_.reshape(-1, 1),
                                det_scores_r_.reshape(-1, 1),
                                boxes_r))
            all_boxes_r.append(dets_r)

            tools.view_bar('{} image cost {}s'.format(a_img_name, (end - start)), i + 1, len(imgs))

        fw2 = open(cfgs.VERSION + '_detections_r.pkl', 'w')
        pickle.dump(all_boxes_r, fw2)
Exemplo n.º 19
0
def detect(det_net, inference_save_path, real_test_imgname_list):

    # 1. preprocess img
    img_plac = tf.placeholder(dtype=tf.uint8, shape=[None, None,
                                                     3])  # is RGB. not GBR
    img_batch = tf.cast(img_plac, tf.float32)
    img_batch = short_side_resize_for_inference_data(
        img_tensor=img_batch,
        target_shortside_len=cfgs.IMG_SHORT_SIDE_LEN,
        length_limitation=cfgs.IMG_MAX_LENGTH)
    img_batch = img_batch - tf.constant(cfgs.PIXEL_MEAN)
    img_batch = tf.expand_dims(img_batch, axis=0)  # [1, None, None, 3]

    detection_boxes, detection_scores, detection_category = det_net.build_whole_detection_network(
        input_img_batch=img_batch, gtboxes_batch=None)

    init_op = tf.group(tf.global_variables_initializer(),
                       tf.local_variables_initializer())
    ################################################################
    ###根据checkpoint恢复最新的
    # restorer, restore_ckpt = det_net.get_restorer()

    ###恢复指定的
    restore_ckpt = os.path.join(cfgs.TRAINED_CKPT,
                                cfgs.VERSION) + '/voc_16000model.ckpt'
    restorer = tf.train.Saver()
    print("model restore from :", restore_ckpt)
    print(20 * "****")
    ################################################################
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
        sess.run(init_op)
        if not restorer is None:
            restorer.restore(sess, restore_ckpt)
            print('restore model')
        all_images_detect_result = []
        for i, a_img_name in enumerate(real_test_imgname_list):

            raw_img = cv2.imread(a_img_name)
            raw_h, raw_w = raw_img.shape[0], raw_img.shape[1]
            start = time.time()
            resized_img, detected_boxes, detected_scores, detected_categories = \
                sess.run(
                    [img_batch, detection_boxes, detection_scores, detection_category],
                    feed_dict={img_plac: raw_img[:, :, ::-1]}  # cv is BGR. But need RGB
                )
            end = time.time()
            # print("{} cost time : {} ".format(img_name, (end - start)))

            show_indices = detected_scores >= cfgs.SHOW_SCORE_THRSHOLD
            show_scores = detected_scores[show_indices]
            show_boxes = detected_boxes[show_indices]
            show_categories = detected_categories[show_indices]
            final_detections = draw_box_in_img.draw_boxes_with_label_and_scores(
                np.squeeze(resized_img, 0),
                boxes=show_boxes,
                labels=show_categories,
                scores=show_scores)
            nake_name = os.path.split(a_img_name)[1]
            print(inference_save_path + '/' + nake_name)

            # cv2.imwrite(inference_save_path + '/' + nake_name,
            #             final_detections[:, :, ::-1])



            xmin, ymin, xmax, ymax = show_boxes[:, 0], show_boxes[:, 1], \
                                     show_boxes[:, 2], show_boxes[:, 3]
            resized_h, resized_w = resized_img.shape[1], resized_img.shape[2]

            xmin = xmin * raw_w / resized_w
            xmax = xmax * raw_w / resized_w

            ymin = ymin * raw_h / resized_h
            ymax = ymax * raw_h / resized_h
            a_img_detect_result = []
            for idex in range(len(show_scores)):
                # label, score, bbox = a_det[0], a_det[1], a_det[2:]
                det_object = {
                    "xmin": int(xmin[idex]),
                    "xmax": int(xmax[idex]),
                    "ymin": int(ymin[idex]),
                    "ymax": int(ymax[idex]),
                    "label": int(show_categories[idex]),
                    "confidence": float(show_scores[idex])
                }
                # print (det_object)

                a_img_detect_result.append(det_object)
            image_result = {
                "filename": nake_name,
                "rects": a_img_detect_result
            }
            all_images_detect_result.append(image_result)
            all_images_result_dict = {"results": all_images_detect_result}

            f = open('result_jinlian20190314.json', 'w')
            json.dump(all_images_result_dict, f)  # , indent=4
            f.close()
            tools.view_bar(
                '{} image cost {}s'.format(a_img_name, (end - start)), i + 1,
                len(real_test_imgname_list))
Exemplo n.º 20
0
def eval_dict_convert(img_num, mode):
    with tf.Graph().as_default():

        # img = tf.placeholder(shape=[None, None, 3], dtype=tf.uint8)

        img_name_batch, img_batch, gtboxes_and_label_batch, num_objects_batch = \
            next_batch(dataset_name=cfgs.DATASET_NAME,
                       batch_size=cfgs.BATCH_SIZE,
                       shortside_len=cfgs.SHORT_SIDE_LEN,
                       is_training=False)

        gtboxes_and_label = tf.py_func(back_forward_convert,
                                       inp=[tf.squeeze(gtboxes_and_label_batch, 0)],
                                       Tout=tf.float32)
        gtboxes_and_label = tf.reshape(gtboxes_and_label, [-1, 6])

        gtboxes_and_label_minAreaRectangle = get_horizon_minAreaRectangle(gtboxes_and_label)

        gtboxes_and_label_minAreaRectangle = tf.reshape(gtboxes_and_label_minAreaRectangle, [-1, 5])

        # ***********************************************************************************************
        # *                                         share net                                           *
        # ***********************************************************************************************
        _, share_net = get_network_byname(net_name=cfgs.NET_NAME,
                                          inputs=img_batch,
                                          num_classes=None,
                                          is_training=True,
                                          output_stride=None,
                                          global_pool=False,
                                          spatial_squeeze=False)
        # ***********************************************************************************************
        # *                                            RPN                                              *
        # ***********************************************************************************************
        rpn = build_rpn.RPN(net_name=cfgs.NET_NAME,
                            inputs=img_batch,
                            gtboxes_and_label=gtboxes_and_label,
                            is_training=False,
                            share_head=False,
                            share_net=share_net,
                            anchor_ratios=cfgs.ANCHOR_RATIOS,
                            anchor_scales=cfgs.ANCHOR_SCALES,
                            anchor_angles=cfgs.ANCHOR_ANGLES,
                            scale_factors=cfgs.SCALE_FACTORS,
                            base_anchor_size_list=cfgs.BASE_ANCHOR_SIZE_LIST,  # P2, P3, P4, P5, P6
                            level=cfgs.LEVEL,
                            anchor_stride=cfgs.ANCHOR_STRIDE,
                            top_k_nms=cfgs.RPN_TOP_K_NMS,
                            kernel_size=cfgs.KERNEL_SIZE,
                            use_angles_condition=False,
                            anchor_angle_threshold=cfgs.RPN_ANCHOR_ANGLES_THRESHOLD,
                            nms_angle_threshold=cfgs.RPN_NMS_ANGLES_THRESHOLD,
                            rpn_nms_iou_threshold=cfgs.RPN_NMS_IOU_THRESHOLD,
                            max_proposals_num=cfgs.MAX_PROPOSAL_NUM,
                            rpn_iou_positive_threshold=cfgs.RPN_IOU_POSITIVE_THRESHOLD,
                            rpn_iou_negative_threshold=cfgs.RPN_IOU_NEGATIVE_THRESHOLD,
                            # iou>=0.7 is positive box, iou< 0.3 is negative
                            rpn_mini_batch_size=cfgs.RPN_MINIBATCH_SIZE,
                            rpn_positives_ratio=cfgs.RPN_POSITIVE_RATE,
                            remove_outside_anchors=cfgs.IS_FILTER_OUTSIDE_BOXES,  # whether remove anchors outside
                            rpn_weight_decay=cfgs.WEIGHT_DECAY[cfgs.NET_NAME],
                            scope='')

        rpn_proposals_boxes, rpn_proposals_scores = rpn.rpn_proposals()  # rpn_score shape: [300, ]
        _, _, rpn_predict_boxes, rpn_predict_scores = rpn.rpn_losses()

        # ***********************************************************************************************
        # *                                         Fast RCNN                                           *
        # ***********************************************************************************************
        fast_rcnn = build_fast_rcnn.FastRCNN(img_batch=img_batch,
                                             feature_pyramid=rpn.feature_pyramid,
                                             rpn_proposals_boxes=rpn_proposals_boxes,
                                             rpn_proposals_scores=rpn_proposals_scores,
                                             stop_gradient_for_proposals=False,
                                             img_shape=tf.shape(img_batch),
                                             roi_size=cfgs.ROI_SIZE,
                                             roi_pool_kernel_size=cfgs.ROI_POOL_KERNEL_SIZE,
                                             scale_factors=cfgs.SCALE_FACTORS,
                                             gtboxes_and_label=None,
                                             fast_rcnn_nms_iou_threshold=cfgs.FAST_RCNN_NMS_IOU_THRESHOLD,
                                             top_k_nms=cfgs.FAST_RCNN_TOP_K_NMS,
                                             nms_angle_threshold=cfgs.FAST_RCNN_NMS_ANGLES_THRESHOLD,
                                             use_angle_condition=False,
                                             level=cfgs.LEVEL,
                                             fast_rcnn_maximum_boxes_per_img=100,
                                             fast_rcnn_nms_max_boxes_per_class=cfgs.FAST_RCNN_NMS_MAX_BOXES_PER_CLASS,
                                             show_detections_score_threshold=cfgs.FINAL_SCORE_THRESHOLD,
                                             # show detections which score >= 0.6
                                             num_classes=cfgs.CLASS_NUM,
                                             fast_rcnn_minibatch_size=cfgs.FAST_RCNN_MINIBATCH_SIZE,
                                             fast_rcnn_positives_ratio=cfgs.FAST_RCNN_POSITIVE_RATE,
                                             fast_rcnn_positives_iou_threshold=cfgs.FAST_RCNN_IOU_POSITIVE_THRESHOLD,
                                             boxes_angle_threshold=cfgs.FAST_RCNN_BOXES_ANGLES_THRESHOLD,
                                             use_dropout=cfgs.USE_DROPOUT,
                                             weight_decay=cfgs.WEIGHT_DECAY[cfgs.NET_NAME],
                                             is_training=False)

        fast_rcnn_decode_boxes, fast_rcnn_score, num_of_objects, detection_category = \
            fast_rcnn.fast_rcnn_predict()

        ##############################################################################################
        if cfgs.NEED_AUXILIARY:
            predict_boxes = tf.concat([fast_rcnn_decode_boxes, rpn_predict_boxes], axis=0)
            predict_scores = tf.concat([fast_rcnn_score, rpn_predict_scores - 0.2], axis=0)
            rpn_predict_label = tf.ones([tf.shape(rpn_predict_scores)[0], ], tf.int64)
            labels = tf.concat([detection_category, rpn_predict_label], axis=0)

            # valid_indices = nms_rotate.nms_rotate(decode_boxes=predict_boxes,
            #                                       scores=predict_scores,
            #                                       iou_threshold=0.15,
            #                                       max_output_size=30,
            #                                       use_angle_condition=False,
            #                                       angle_threshold=15,
            #                                       use_gpu=True)
            valid_indices = tf.py_func(nms_rotate.nms_rotate_cpu,
                                       inp=[predict_boxes, predict_scores,
                                            tf.constant(0.15, tf.float32), tf.constant(30, tf.float32)],
                                       Tout=tf.int64)

            fast_rcnn_decode_boxes = tf.gather(predict_boxes, valid_indices)
            fast_rcnn_score = tf.gather(predict_scores, valid_indices)
            detection_category = tf.gather(labels, valid_indices)

        ##############################################################################################
        if mode == 0:
            fast_rcnn_decode_boxes = get_horizon_minAreaRectangle(fast_rcnn_decode_boxes, False)

        # train
        init_op = tf.group(
            tf.global_variables_initializer(),
            tf.local_variables_initializer()
        )

        restorer, restore_ckpt = restore_model.get_restorer()

        config = tf.ConfigProto()
        # config.gpu_options.per_process_gpu_memory_fraction = 0.5
        config.gpu_options.allow_growth = True
        with tf.Session(config=config) as sess:
            sess.run(init_op)
            if not restorer is None:
                restorer.restore(sess, restore_ckpt)
                print('restore model')

            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(sess, coord)

            gtboxes_dict = {}
            predict_dict = {}

            for i in range(img_num):

                start = time.time()

                _img_name_batch, _img_batch, _gtboxes_and_label, _fast_rcnn_decode_boxes, \
                _gtboxes_and_label_minAreaRectangle, _fast_rcnn_score, _detection_category \
                    = sess.run([img_name_batch, img_batch, gtboxes_and_label, fast_rcnn_decode_boxes,
                                gtboxes_and_label_minAreaRectangle, fast_rcnn_score, detection_category])
                end = time.time()

                # gtboxes convert dict
                gtboxes_dict[str(_img_name_batch[0])] = []
                predict_dict[str(_img_name_batch[0])] = []

                # for j, box in enumerate(_gtboxes_and_label):
                #     bbox_dict = {}
                #     bbox_dict['bbox'] = np.array(_gtboxes_and_label[j, :-1], np.float64)
                #     bbox_dict['name'] = LABEl_NAME_MAP[int(_gtboxes_and_label[j, -1])]
                #     gtbox_dict[str(_img_name_batch[0])].append(bbox_dict)
                #
                # for label in NAME_LABEL_MAP.keys():
                #     if label == 'back_ground':
                #         continue
                #     else:
                #         temp_dict = {}
                #         temp_dict['name'] = label
                #
                #         ind = np.where(_detection_category == NAME_LABEL_MAP[label])[0]
                #         temp_boxes = _fast_rcnn_decode_boxes[ind]
                #         temp_score = np.reshape(_fast_rcnn_score[ind], [-1, 1])
                #         temp_dict['bbox'] = np.array(np.concatenate([temp_boxes, temp_score], axis=1), np.float64)
                #         predict_dict[str(_img_name_batch[0])].append(temp_dict)

                if mode == 0:
                    gtboxes_list, predict_list = \
                        make_dict_packle(_gtboxes_and_label_minAreaRectangle, _fast_rcnn_decode_boxes,
                                         _fast_rcnn_score, _detection_category)
                else:
                    gtboxes_list, predict_list = \
                        make_dict_packle(_gtboxes_and_label, _fast_rcnn_decode_boxes,
                                         _fast_rcnn_score, _detection_category)

                gtboxes_dict[str(_img_name_batch[0])].extend(gtboxes_list)
                predict_dict[str(_img_name_batch[0])].extend(predict_list)

                view_bar('{} image cost {}s'.format(str(_img_name_batch[0]), (end - start)), i + 1, img_num)

            fw1 = open('gtboxes_dict.pkl', 'w')
            fw2 = open('predict_dict.pkl', 'w')
            pickle.dump(gtboxes_dict, fw1)
            pickle.dump(predict_dict, fw2)
            fw1.close()
            fw2.close()
            coord.request_stop()
            coord.join(threads)