def Get_Earnings_Surprise(stock):
    '''Go to Yahoo Finance and scrape the Analyst Estimates. Determine if the Earning Suprises were positive.
    Return the results in a JSON object.'''
    
    analyst_estimates = 'http://ca.finance.yahoo.com/q/ae?s=' + stock + '+Analyst+Estimates'
    #Get Last 4 EPS Surprises
    analyst_estimates_web = requests.get(analyst_estimates)
    analyst_estimates_text = analyst_estimates_web.content
    
    analyst_estimates_soup = bs(analyst_estimates_text, "lxml")
    
    analyst_estimates_rows = analyst_estimates_soup.findAll('tr')
    #i = 0
    try:
        for n in analyst_estimates_rows:
            n = str(n)    
            if mods.Match('<tr><td class="yfnc_tablehead1"(.*?)EPS Est', n):                
                n = n.split('<td class="yfnc_tabledata1">')
                est_list = [n[1], n[2], n[3], n[4]]
                for lst, item in enumerate(est_list): 
                    est_list[lst] = float(item.replace('</tr>', '').replace('</td>', ''))      
            elif mods.Match('<tr><td class="yfnc_tablehead1"(.*?)EPS Actual', n):                     
                n = n.split('<td class="yfnc_tabledata1">')
                actual_list = [n[1], n[2], n[3], n[4]]
                for lst, item in enumerate(actual_list): 
                    actual_list[lst] = float(item.replace('</tr>', '').replace('</td>', ''))  
            elif mods.Match('<tr><th class="yfnc_tablehead1"(.*?)Revenue Est', n):
                n = n.split('<th class="yfnc_tablehead1" scope="col" style="font-size:11px;text-align:right;" width="18%">')
                dates = [n[1], n[2], n[3], n[4]]
                for lst, item in enumerate(dates): 
                    dates[lst] = item.replace('</tr>', '').replace('</td>', '').replace('</th>', '').replace('<br/>', ' ') 
        surprise1, surprise2, surprise3, surprise4 = 1 - est_list[0]/actual_list[0], 1 - est_list[1]/actual_list[1], 1 - est_list[2]/actual_list[2], 1 - est_list[3]/actual_list[3]
        
        #Test if Earnings Surprise was Positive
        is_postive_pes_surprise = False
        if surprise1 > 0 and surprise2 > 0 and surprise3 > 0 and surprise4 > 0:
            is_postive_pes_surprise = True
        
        #Create Ditionary of Results
        results = collections.OrderedDict()
        results['Stock'] = stock
        results['DateRun'] = mods.Today()
        results['TestRun'] = 'Earnings_Surprise'
        results[dates[0].replace('Qtr.', '').replace('Current', '',).replace('Next', '').replace('Year', '').strip()] = surprise1 
        results[dates[1].replace('Qtr.', '').replace('Current', '',).replace('Next', '').replace('Year', '').strip()] = surprise2 
        results[dates[2].replace('Qtr.', '').replace('Current', '',).replace('Next', '').replace('Year', '').strip()] = surprise3 
        results[dates[3].replace('Qtr.', '').replace('Current', '',).replace('Next', '').replace('Year', '').strip()] = surprise4 
        results['Actuals'] = actual_list
        results['EST'] = est_list
        results['Result'] = is_postive_pes_surprise
        return results

    except:
        results = collections.OrderedDict()
        results['stock'] = stock
        results['TestRun'] = 'Earnings_Surprise'
        results['DateRun'] = mods.Today()
        results['Result'] = 'Test Failed'
        return results
Exemplo n.º 2
0
def Get_Revenue(stock):
    '''Go to Yahoo Finance and Pull the Last Three Years of Revenue Results and Determine if Revenue Passes or Fails Test.
    Return the results as a JSON object.'''

    revenue = 'http://ca.finance.yahoo.com/q/is?s=' + stock + '&annual'
    #Get Revenue Data from Last Income Statement
    revenue_web = requests.get(revenue)
    revenue_text = revenue_web.content   
    revenue_soup = bs(revenue_text, "lxml") 
    try:
        # Get Last Three Years of Revenue
        revenue = []    
        for n in revenue_soup.find_all('tr'):
            n = str(n)
            if mods.Match('<tr><td colspan="2">\n<strong>\n\s+Total Revenue', n):
                n = n.replace('\n', '').replace('</strong>', '').replace('</td>', '').replace('<td align="right">', '').replace('</tr', '').strip()
                n = n.split('<strong>')
                for item in n:
                    item = item.strip()
                    if mods.Match('\d+', item):
                        item = item.replace(' ', '').replace('>', '').replace(',', '').replace('\xc2\xa0\xc2\xa0', '').strip()                  
                        revenue.append(item)

        last_reported_rev, second_reported_rev, third_reported_rev = float(revenue[0]), float(revenue[1]), float(revenue[2])
    #
    #    #Get Dates for Last Three Reported Years
        dates = mods.get_reported_dates(stock)
        last_reported_dt, year_before_reported_dt, two_yr_before_reported_dt = dates[0], dates[1], dates[2]
      
    #    #Test if Revenue Results are Positive
        is_positive_rev = False
        if last_reported_rev > second_reported_rev and second_reported_rev > third_reported_rev:
            is_positive_rev = True
    #    
    #    #Create Ditionary of Results  
        results = collections.OrderedDict()
        results['stock'] = stock
        results['TestRun'] = 'Revenue_Test'
        results['DateRun'] = mods.Today()
        results['Result'] = is_positive_rev
        results[last_reported_dt] = last_reported_rev
        results[year_before_reported_dt] = second_reported_rev
        results[two_yr_before_reported_dt] = third_reported_rev    
        return results
    except:
        results = collections.OrderedDict()
        results['stock'] = stock
        results['TestRun'] = 'Revenue_Test'
        results['DateRun'] = mods.Today()
        results['Result'] = 'Test Failed'
        return results
def Get_Earnings_V_Industry(stock):
    '''Go to Yahoo finance and pull information from Analyst Estimates. Determine if the earnings 
    are favorable compared to the industry. Return the results as a JSON object.'''

    analyst_estimates = 'http://ca.finance.yahoo.com/q/ae?s=' + stock + '+Analyst+Estimates'
    #Get Last 4 EPS Surprises
    analyst_estimates_web = requests.get(analyst_estimates)
    analyst_estimates_text = analyst_estimates_web.content

    analyst_estimates_soup = bs(analyst_estimates_text)

    analyst_estimates_rows = analyst_estimates_soup.findAll('tr')
    #i = 0
    try:

        for n in analyst_estimates_rows:
            n = str(n)
            if mods.Match('<tr><td class="yfnc_tablehead1"(.*?)Price/Earnings',
                          n):
                n = n.split('<td class="yfnc_tabledata1">')
                pe_list = [n[1], n[2], n[3], n[4]]
                for lst, item in enumerate(pe_list):
                    pe_list[lst] = float(
                        item.replace('</tr>', '').replace('</td>',
                                                          '').replace('%', ''))

        #Test if Earnings Surprise was Positive
        is_postive_pe_v_industry = False
        if pe_list[0] > pe_list[1]:
            is_postive_pe_v_industry = True

        #Create Ditionary of Results
        results = collections.OrderedDict()
        results['Stock'] = stock
        results['DateRun'] = mods.Today()
        results['TestRun'] = 'Earnings Versus Industry'
        results['PE Estimate: ' + stock] = pe_list[0]
        results['Industry Estimate:'] = pe_list[1]
        results['Result'] = is_postive_pe_v_industry
        return results

    except:
        results = collections.OrderedDict()
        results['stock'] = stock
        results['TestRun'] = 'Earnings Versus Industry'
        results['DateRun'] = mods.Today()
        results['Result'] = 'Test Failed'
        return results
def Get_Growth_Forecast(stock):
    '''Go to Yahoo Finance and get the analyst estimates. Determine if the last 4 EPS surprise results
    were positive. Return the results as a JSON object.'''

    analyst_estimates = 'http://ca.finance.yahoo.com/q/ae?s=' + stock + '+Analyst+Estimates'
    #Get Last 4 EPS Surprises
    analyst_estimates_web = requests.get(analyst_estimates)
    analyst_estimates_text = analyst_estimates_web.content

    analyst_estimates_soup = bs(analyst_estimates_text, 'lxml')

    analyst_estimates_rows = analyst_estimates_soup.findAll('tr')

    #i = 0
    try:
        for n in analyst_estimates_rows:
            n = str(n)
            if mods.Match('<tr><td class="yfnc_tablehead1"(.*?)Next 5 Years',
                          n):
                n = n.split('<td class="yfnc_tabledata1">')
                est_list = [n[1], n[2], n[3], n[4]]
                for lst, item in enumerate(est_list):
                    est_list[lst] = float(
                        item.replace('</tr>', '').replace('</td>',
                                                          '').replace('%', ''))

        #Test if Earnings Surprise was Positive
        is_postive_growth_forecast = False
        if est_list[0] > 8:
            is_postive_growth_forecast = True

        #Create Ditionary of Results
        results = collections.OrderedDict()
        results['Stock'] = stock
        results['DateRun'] = mods.Today()
        results['TestRun'] = 'Growth_Forecast'
        results['Growth Forecast: ' + stock] = est_list[0]
        results['Result'] = is_postive_growth_forecast
        return results

    except:
        results = collections.OrderedDict()
        results['stock'] = stock
        results['TestRun'] = 'Growth_Forecast'
        results['DateRun'] = mods.Today()
        results['Result'] = 'Test Failed'
        return results
Exemplo n.º 5
0
def Get_Shares_Short(stock):
    '''Got to Yahoo Finance and determine the Insider Tracking of the stock. Return the results as a 
    JSON object.'''
    insider_transactions = 'http://ca.finance.yahoo.com/q/it?s=' + stock + '+Insider+Transactions'
    #Get Insider Transaction Data (Last 6 Months and Last 3 Months)
    insider_transactions_web = requests.get(insider_transactions)
    insider_transactions_text = insider_transactions_web.content

    insider_transactions_soup = bs(insider_transactions_text)

    insider_transactions_rows = insider_transactions_soup.findAll('tr')
    i = 0
    insider_list = []
    for n in insider_transactions_rows:
        if n.text[0:10] == 'Net Shares':
            n = str(n)
            n = n.split('<td align="right" class="yfnc_tabledata1"')
            insider_list.append(n[1].replace('</td>', '').replace(
                '</tr>', '').replace(' width="20%">',
                                     '').replace('>', '').replace(',', ''))
    try:
        #Test if Positive Insider Tracking (Positive Purchase of Stock in Last 3 Months)
        is_postive_insider = False
        if mods.Match('\(\d+\)', insider_list[1]):
            is_postive_insider = True

        #Create Ditionary of Results
        results = collections.OrderedDict()
        results['Stock'] = stock
        results['DateRun'] = mods.Today()
        results['TestRun'] = 'Insider_Trading'
        results['Insider Purchasing 6 Month: ' + stock] = insider_list[0]
        results['Insider Purchasing 3 Month: ' + stock] = insider_list[1]
        results['Result'] = is_postive_insider
        return results

    except:
        results = collections.OrderedDict()
        results['stock'] = stock
        results['TestRun'] = 'Insider_Trading'
        results['DateRun'] = mods.Today()
        results['Result'] = 'Test Failed'
        return results
Exemplo n.º 6
0
def Get_Earnings_Forecast(stock):
    '''Go to Yahoo Finance and scrape the Analyst Estimates. Determine if the Earnings Forecast is postive.
    Return the results in a JSON object.'''

    forecast = 'http://ca.finance.yahoo.com/q/ae?s=' + stock + '+Analyst+Estimates'
    #Get Last 4 Quarters of Earnings Forecasts
    forecast_web = requests.get(forecast)
    forecast_text = forecast_web.content
    forecast_soup = bs(forecast_text)
    forecast_rows = forecast_soup.findAll('tr')
    #i = 0
    try:
        lists = []
        for n in forecast_rows:
            n = str(n)
            if mods.Match('<tr><th class="yfnc_tablehead1"(.*?)Earnings Est',
                          n):
                n = n.split(
                    '<th class="yfnc_tablehead1" scope="col" style="font-size:11px; font-weight:normal;text-align:right;" width="18%">'
                )
                dates_list = [n[1], n[2], n[3], n[4]]
                for lst, item in enumerate(dates_list):
                    dates_list[lst] = item.replace('</tr>', '').replace(
                        '</td>', '').replace('</th>',
                                             '').replace('<br/>', ' ')
            elif mods.Match(
                    '<tr><td class="yfnc_tablehead1"(.*?)Avg. Estimate', n):
                n = n.split('<td class="yfnc_tabledata1">')
                forecast_list = [n[1], n[2], n[3], n[4]]
                try:
                    for lst, item in enumerate(forecast_list):
                        forecast_list[lst] = float(
                            item.replace('</tr>', '').replace('</td>', ''))
                    lists.append(forecast_list)
                except:
                    dummy = 0

        #Test for Positive Forecasts
        is_positive_earnings_forecast = False
        if lists[0][0] < lists[0][1] and lists[0][1] < lists[0][2] and lists[
                0][2] < lists[0][3]:
            is_positive_earnings_forecast = True

        #Create Ditionary of Results

        results = collections.OrderedDict()
        results['Stock'] = stock
        results['TestRun'] = 'Earnings_Forecast'
        results['DateRun'] = mods.Today()
        results['Result'] = is_positive_earnings_forecast
        results['Current Qtr'] = lists[0][0]
        results['Next Qtr'] = lists[0][1]
        results['Current Year'] = lists[0][2]
        results['Next Year'] = lists[0][3]
        return results

    except:
        results = collections.OrderedDict()
        results['stock'] = stock
        results['TestRun'] = 'Earnings_Forecast'
        results['DateRun'] = mods.Today()
        results['Result'] = 'Test Failed'
        return results


##Testing:
#stock = 'AAPL'
#print Get_Earnings_Forecast(stock)
Exemplo n.º 7
0
def Get_ROE(stock):        
    '''Go to Yahoo Finance. Get the results from the Key Statistics page, Income Statement, and Balance Sheet.
	Determine if the results are positive for a good return on equity. Return the results as a JSON object.'''
    
    key_stats = 'http://ca.finance.yahoo.com/q/ks?s=' + stock + '+Key+Statistics'
    income_statement = 'http://ca.finance.yahoo.com/q/is?s=' + stock + '+Income+Statement&annual'
    balance_sheet = 'http://ca.finance.yahoo.com/q/bs?s=' + stock + '+Balance+Sheet&annual'
    
    #Get Last 12 Months ROE
    key_stats_web = requests.get(key_stats)
    key_stats_text = key_stats_web.content
    
    key_stats_soup = bs(key_stats_text, "lxml")
    
    for n in key_stats_soup.find_all('tr'):
        if n.text[0:16] == 'Return on Equity':          
            amount = n.text.split(':')
            amount = str(amount[1])
            roe_12month = float(amount[0:-1])
       
    # Get Last Three Years of Return on Equity (Net Income/Stock Holder's Equity)
    # First get the Last Three Years of Net Income from Income Statement
    income_statement_web = requests.get(income_statement)
    income_statement_text = income_statement_web.content
    
    income_statement_soup = bs(income_statement_text)
    
    income_statement_rows = income_statement_soup.findAll('tr')
    #i = 0
    try:
        for row in income_statement_rows:
            row = str(row)
            if mods.Match('<tr><td colspan="2">\n<strong>\n\s+Net Income', row):  
                row = row.split('\n')
                last_reported_ni, second_reported_ni, third_reported_ni =  row[6].strip(), row[10].strip(), row[14].strip()
                last_reported_ni, second_reported_ni, third_reported_ni = float(last_reported_ni[0:-4].replace(',', '')),float(second_reported_ni[0:-4].replace(',', '')), float(third_reported_ni[0:-4].replace(',', ''))
    
        # Second get the Last Three Years of StockHolder's Equity from Balance Sheet
        balance_sheet_web = requests.get(balance_sheet)
        balance_sheet_text = balance_sheet_web.content
        
        balance_sheet_soup = bs(balance_sheet_text, 'lxml')
        
        balance_sheet_rows = balance_sheet_soup.findAll('tr')
        for row in balance_sheet_rows:
            row = str(row)
            if mods.Match('<tr><td colspan="2">\n<strong>\n\s+Total Stockholder Equity', row):
                row = row.split('\n')
                last_reported_se, second_reported_se, third_reported_se =  row[6].strip(), row[10].strip(), row[14].strip()
                last_reported_se, second_reported_se, third_reported_se = float(last_reported_se[0:-4].replace(',', '')),float(second_reported_se[0:-4].replace(',', '')), float(third_reported_se[0:-4].replace(',', ''))
        
        #Third Calculate ROE (Net Income/Stock Holders Equity)
        last_reported_roe, second_reported_roe, third_reported_roe = last_reported_ni/last_reported_se, second_reported_ni/second_reported_se, third_reported_ni/third_reported_se
        #Get Dates for Last Three Reported Years
        last_reported_dt, year_before_reported_dt, two_yr_before_reported_dt = mods.get_reported_dates(stock)
    
        is_positive_rev = False
        now = datetime.datetime.now()
        if int(last_reported_dt[0:2]) - now.month < 6:
            if roe_12month > second_reported_roe and second_reported_roe > third_reported_roe:
                is_positive_rev = True
        # Time since last annual reported revenue was less than 6 months
        else:
            if last_reported_roe > second_reported_roe and second_reported_roe > third_reported_roe:
                is_positive_rev = True
        
        #Create Ditionary of Results
        
        results = collections.OrderedDict()
        results['Stock'] = stock
        results['DateRun'] = mods.Today()
        results['TestRun'] = 'Positive_Return_on_Equity'
        results['Result'] = is_positive_rev
        results[last_reported_dt] = last_reported_roe
        results[year_before_reported_dt] = second_reported_roe
        results[two_yr_before_reported_dt] = third_reported_roe
        results['12 Month Return On Equity'] = roe_12month 
        return results
    
    except:
        results = collections.OrderedDict()
        results['stock'] = stock
        results['TestRun'] = 'Positive_Return_on_Equity'
        results['DateRun'] = mods.Today()
        results['Result'] = 'Test Failed'
        return results
def Get_EPS(stock):

    #Go to Yahoo Finance and Pull the Last Three Years of Revenue Results and Determine if Revenue Passes or Fails Test
    #Current Year: http://finance.yahoo.com/q/ks?s=AAPL+Key+Statistics
    #Last Years Income Statement: http://finance.yahoo.com/q/is?s=AAPL+Income+Statement&annual

    key_stats = 'http://ca.finance.yahoo.com/q/ks?s=' + stock + '+Key+Statistics'
    market_watch = 'http://www.marketwatch.com/investing/stock/' + stock + '/financials'

    #Get Last 12 Months Earnings Per Share
    key_stats_web = requests.get(key_stats)
    key_stats_text = key_stats_web.content

    key_stats_soup = bs(key_stats_text)

    for n in key_stats_soup.find_all('tr'):
        if n.text[0:11] == 'Diluted EPS':
            amount = n.text.split(':')
            eps_12month = float(amount[1])

    # Get Last Three Years of Earnings Per Share
    market_watch_web = requests.get(market_watch)
    market_watch_text = market_watch_web.content

    market_watch_soup = bs(market_watch_text)

    market_watch_rows = market_watch_soup.findAll('tr')

    #tag = '<tr class="mainRow"> \
    #<td class="rowTitle"><a data-ref="ratio_Eps1YrAnnualGrowth" href="#"><span class="expand"></span></a> EPS (Basic)</td>'

    #i = 0
    try:
        for row in market_watch_rows:
            row = str(row)
            if mods.Match('<tr class="mainRow">\n(.*?)EPS \(Diluted\)', row):
                row = row.split('<td class="valueCell">')
                last_reported_eps, second_reported_eps, third_reported_eps = float(
                    row[5][0:4].strip()), float(row[4][0:4].strip()), float(
                        row[3][0:4].strip())

        #Get Dates for Last Three Reported Years
        last_reported_dt, year_before_reported_dt, two_yr_before_reported_dt = mods.get_reported_dates(
            stock)
        #print mods.get_reported_dates(stock)
        is_positive_eps = False
        now = datetime.datetime.now()
        if int(last_reported_dt[0:2]) - now.month < 6:

            if eps_12month > second_reported_eps and second_reported_eps > third_reported_eps:
                is_positive_eps = True
        # Time since last annual reported revenue was less than 6 months
        else:
            if last_reported_eps > second_reported_eps and second_reported_eps > third_reported_eps:
                is_positive_eps = True
        '''
        '''
        #Create Ditionary of Results
        results = collections.OrderedDict()
        results['stock'] = stock
        results['TestRun'] = 'EPS'
        results['DateRun'] = mods.Today()
        results['Result'] = is_positive_eps
        results[last_reported_dt] = last_reported_eps
        results[year_before_reported_dt] = second_reported_eps
        results[two_yr_before_reported_dt] = third_reported_eps
        results['12 Month Reported EPS'] = eps_12month
        return results

    except:
        results = collections.OrderedDict()
        results['stock'] = stock
        results['TestRun'] = 'EPS'
        results['DateRun'] = mods.Today()
        results['Result'] = 'Test Failed'
        return results


#Testing:
#stock = 'AAPL'
#print Get_EPS(stock)