def _fullconnect(name, input_tensor, hidden_nodes, stddev=0.04, wd=0.0, reuse=False): with tf.variable_scope(name, reuse=reuse) as scope: input_tensor_size = reduce(lambda x,y: x*y, input_tensor.get_shape()[1:].as_list()) weights = helper._variable_with_weight_decay('weights', shape=[input_tensor_size, hidden_nodes], stddev=stddev, wd=wd) biases = helper._variable('biases', [hidden_nodes], tf.constant_initializer(0.0)) reshaped = tf.reshape(input_tensor, [-1, input_tensor_size]) output_tensor = tf.nn.xw_plus_b(reshaped, weights, biases, name=scope.name) if not reuse: helper._activation_summary(output_tensor) return output_tensor
def _convolution(name, input_tensor, kernel_shape, stddev=1e-4, wd=0.0, reuse=False): with tf.variable_scope(name, reuse=reuse) as scope: kernel = helper._variable_with_weight_decay("weights", shape=kernel_shape, stddev=stddev, wd=wd) biases = helper._variable("biases", [kernel_shape[-1]], tf.constant_initializer(0.0)) conv = tf.nn.conv2d(input_tensor, kernel, [1, 1, 1, 1], padding="SAME") output_tensor = tf.nn.bias_add(conv, biases) if not reuse: helper._activation_summary(output_tensor) helper._multichannel_image_summary(scope.name + "/weights", kernel, perm=[3, 2, 1, 0]) return output_tensor
def _convolution(name, input_tensor, kernel_shape, stddev=1e-4, wd=0.0, reuse=False): with tf.variable_scope(name, reuse=reuse) as scope: kernel = helper._variable_with_weight_decay('weights', shape=kernel_shape, stddev=stddev, wd=wd) biases = helper._variable('biases', [kernel_shape[-1]], tf.constant_initializer(0.0)) conv = tf.nn.conv2d(input_tensor, kernel, [1, 1, 1, 1], padding='SAME') output_tensor = tf.nn.bias_add(conv, biases) if not reuse: helper._activation_summary(output_tensor) helper._multichannel_image_summary(scope.name + '/weights', kernel, perm=[3, 2, 1, 0]) return output_tensor
def _fullconnect(name, input_tensor, hidden_nodes, stddev=0.04, wd=0.0, reuse=False): with tf.variable_scope(name, reuse=reuse) as scope: input_tensor_size = reduce(lambda x, y: x * y, input_tensor.get_shape()[1:].as_list()) weights = helper._variable_with_weight_decay( "weights", shape=[input_tensor_size, hidden_nodes], stddev=stddev, wd=wd ) biases = helper._variable("biases", [hidden_nodes], tf.constant_initializer(0.0)) reshaped = tf.reshape(input_tensor, [-1, input_tensor_size]) output_tensor = tf.nn.xw_plus_b(reshaped, weights, biases, name=scope.name) if not reuse: helper._activation_summary(output_tensor) return output_tensor