Exemplo n.º 1
0
def findCountriesLang():
    """Find names of countries and their official languages for all countries in “North America”"""
    officialLang_df = countryLang_df[countryLang_df['IsOfficial'] == 'T']
    merged_df = country_df.merge(officialLang_df,
                                 how='left',
                                 left_on="Code",
                                 right_on="CountryCode")
    merged_df = merged_df[(merged_df['Continent'] == 'North America'
                           )].loc[:, ['Name', 'Language']].sort_values(
                               by=['Name'])
    merged_df['Language'] = merged_df['Language'].fillna('None')

    langaugeLists = merged_df.groupby(['Name'])['Language'].apply(list)
    formatted_df = pd.DataFrame({
        'Name': np.unique(merged_df['Name']),
        'languages': langaugeLists
    })
    vals = formatted_df.values

    #For loop for sake of printing:
    for country in vals:
        str1 = ''
        str1 += country[0]
        str1 += ', '
        str1 += listToString(country[1])
        print(str1)
    return None
Exemplo n.º 2
0
def findCountriesLang():
    """Find names of countries and their official languages for all countries in “North America”"""
    url = 'https://hw1-dsci551-31309.firebaseio.com/world/country_nested.json?orderBy="Continent"&equalTo="North America"&print=pretty' 
    response = requests.get(url)
    perf_file = open("performance.txt","a")
    perf_file.write("firebase-B-nested: Requests Made - 1, Size of Download (Bytes) - ")
    perf_file.write(str(len(response.content)))
    perf_file.write("\n\n")
    perf_file.close()
    countryNested_data = response.json()

    data = {}
    for code in countryNested_data.keys():
        lang_d =  countryNested_data[code]['languages']
        official = []
        for lang in lang_d.keys():
            if lang_d[lang]['IsOfficial'] == "T":
                official.append(lang)
        
        data[countryNested_data[code]['Name']] = listToString(official)
        
    for k,v in data.items():
        if len(v) == 0:
            data[k] = 'None'  
            
    data = dict(sorted(data.items()))

    for k,v in data.items():
        str1 = k
        str1 += ', '
        str1 += v
        print(str1)
    
    return None
Exemplo n.º 3
0
def findCountriesLang():
    """Find names of countries and their official languages for all countries in “North America”"""
    data = {}
    for country in country_data:
        if country['Continent'] == 'North America':
            country_code = country['Code']
            name = country['Name']
            lang_true = []
            for countryLang in countryLang_data:
                if countryLang['CountryCode'] == country_code and countryLang[
                        'IsOfficial'] == 'T':
                    lang_true.append(countryLang['Language'])
            data[name] = lang_true

    #Change empty to 'None':
    for k, v in data.items():
        if len(v) == 0:
            data[k] = ['None']
    data = dict(sorted(data.items()))

    for k, v in data.items():
        str1 = k
        str1 += ', '
        str1 += listToString(v)
        print(str1)
    return None
Exemplo n.º 4
0
def findCountriesCapitals():
    """Find names of countries and their capital cities for all countries in “North America”"""
    merged_df = country_df.merge(city_df, how = 'left', left_on = "Capital", right_on = "ID").rename(columns = {'Name_x': 'CountryName', 'Name_y': 'CapitalName'})
    merged_df = merged_df.loc[:, ['CountryName', 'CapitalName', 'Continent']]
    vals = merged_df[merged_df['Continent'] == 'North America'][['CountryName', 'CapitalName']].sort_values(by=['CountryName']).values
    
    #For loop for sake of printing:
    for country in vals:
        print(listToString(country))
    return None
Exemplo n.º 5
0
zPresp = resptf.root.zPresp.read()
mask = resptf.root.mask.read()

# Print matrix shapes
print("zRresp shape (num time points, num voxels): ", zRresp.shape)
print("zPresp shape (num time points, num voxels): ", zPresp.shape)
print("mask shape (Z, Y, X): ", mask.shape)

R_texts = []
P_texts = []
R_voxels_to_be_removed = []
P_voxels_to_be_removed = []
for index in range(len(Rstim)):
    sList = Rstim[index]
    if len(sList) > 0:
        R_texts.append(listToString(sList))
    else:
        R_voxels_to_be_removed.append(index)
#Not sure if we need to add held-out set stimuli
for index in range(len(Pstim)):
    sList = Pstim[index]
    if len(sList) > 0:
        P_texts.append(listToString(sList))
    else:
        P_voxels_to_be_removed.append(index)

print("Number of R sentences: ")
print(len(R_texts))
print("Number of P sentences: ")
print(len(P_texts))