Exemplo n.º 1
0
def knn_maker_algoritm(trainfolderpath):
    dataModel = get_data_from_folder(trainfolderpath)
    knnModel = classify(dataModel.trainFeat, dataModel.trainLabels)
    accKnnModel = getAccuracy(knnModel, dataModel.testFeat,
                              dataModel.testLabels)
    print("KNNClassifier accuracy: {:.2f}%".format(accKnnModel * 100))
    saveModel(knnModel)
Exemplo n.º 2
0
def mlp_maker_algoritm(trainfolderpath):
    dataModel = get_data_from_folder(trainfolderpath)
    mlpModel = classify(dataModel.trainFeat, dataModel.trainLabels)
    accmlpModel = getAccuracy(mlpModel, dataModel.testFeat,
                              dataModel.testLabels)
    print("MLP Classifier accuracy: {:.2f}%".format(accmlpModel * 100))
    saveModel(mlpModel)
def random_forest_maker_algoritm(trainfolderpath):
    dataModel = get_data_from_folder(trainfolderpath)
    random_forestModel = classify(dataModel.trainFeat, dataModel.trainLabels)
    accModel = getAccuracy(random_forestModel, dataModel.testFeat,
                           dataModel.testLabels)
    print("Random Forest Classifier accuracy: {:.2f}%".format(accModel * 100))
    saveModel(random_forestModel)
Exemplo n.º 4
0
def decision_tree_maker_algoritm(trainfolderpath):
    dataModel = get_data_from_folder(trainfolderpath)
    decisionTreeModel = classify(dataModel.trainFeat, dataModel.trainLabels)
    accDecitionTree = getAccuracy(decisionTreeModel, dataModel.testFeat,
                                  dataModel.testLabels)
    print("DecisionTreeClassifier accuracy: {:.2f}%".format(accDecitionTree *
                                                            100))
    saveModel(decisionTreeModel)
def chooseClassifier(trainfolderpath):
    dataModel = get_data_from_folder(trainfolderpath)
    decisionTreeModel = dtc(dataModel.trainFeat, dataModel.trainLabels)
    knnModel = kc(dataModel.trainFeat, dataModel.trainLabels)
    accDecitionTree = getAccuracy(decisionTreeModel, dataModel.testFeat,
                                  dataModel.testLabels)
    accKnnModel = getAccuracy(knnModel, dataModel.testFeat,
                              dataModel.testLabels)
    print("DecisionTreeClassifier accuracy: {:.2f}%".format(accDecitionTree *
                                                            100))
    print("KNNClassifier accuracy: {:.2f}%".format(accKnnModel * 100))
    acc = accDecitionTree
    if accKnnModel > acc:
        acc = accKnnModel
        print("Knn is saved")
        saveModel(knnModel)
    else:
        print("Decition tree is saved")
        saveModel(decisionTreeModel)

    return acc
def logistic_regression_maker_algoritm(trainfolderpath):
    dataModel = get_data_from_folder(trainfolderpath)
    model = classify(dataModel.trainFeat, dataModel.trainLabels)
    acc = getAccuracy(model, dataModel.testFeat, dataModel.testLabels)
    print("Logistic Regression accuracy: {:.2f}%".format(acc * 100))
    saveModel(model)
Exemplo n.º 7
0
def svm_maker_algoritm(trainfolderpath):
    dataModel = get_data_from_folder(trainfolderpath)
    svmModel = classify(dataModel.trainFeat, dataModel.trainLabels)
    accSVMModel = getAccuracy(svmModel, dataModel.testFeat, dataModel.testLabels)
    print("SVMClassifier accuracy: {:.2f}%".format(accSVMModel * 100))
    saveModel(svmModel)
Exemplo n.º 8
0
    loadedUp    = False
    while not loadedUp:
        try:
           
            trainImages  = helper.loadData(trainNP+"XtrainImages")
            trainVecs    = helper.loadData(trainNP+"XtrainVecs")
            trainTargets = helper.loadData(trainNP+"ytrain")            
            
            loadedUp    = True
        except Exception as e:
            err     = e
            print err, "                              \r",
            time.sleep(2)
    print ""

    subprocess.call("rm "+trainNP+"XtrainImages.h5",shell=True)
    subprocess.call("rm "+trainNP+"XtrainVecs.h5",shell=True)
    subprocess.call("rm "+trainNP+"ytrain.h5",shell=True)

    #train the model on it
    print trainImages.shape, trainVecs.shape
    model.fit([trainImages,trainVecs], trainTargets, batch_size=batch_size, nb_epoch=1)

   
    del trainImages, trainTargets

    helper.saveModel(model,folder+"wholeModel")