Exemplo n.º 1
0
def method(train, validation, silent):

	trainResults = training(train, silent)

	#testResults = testFunc(trainResults, test)[0]
	bidprices = testFunc(trainResults, validation, silent)[1]

	#saveToFile(testResults, 'data/submissions/test.csv')
	return evaluate(bidprices, 'data/datasets/validation.csv', 6250)
Exemplo n.º 2
0
def predict(constant_bidprices, validation_set):
    print('Predicting bid prices using constant bidding strategy model:')
    bids = {}
    validationDF = pd.read_csv(validation_set)

    n = len(validationDF)

    for i in range(0, n):
        progress(i + 1, n)
        bidid = validationDF.bidid.values[i]
        advertiser = validationDF.advertiser.values[i]
        constBidPrice = constant_bidprices[advertiser]
        bids[bidid] = constBidPrice

    return bids


clearTerminal()

start = time.time()
print('Start')

const_bidprices = train('train.csv')
bids = predict(const_bidprices, 'validation.csv')
evaluate(bids, 'validation.csv', 25000)

end = time.time()
printElapsedTime(start, end)

print('Finish')
Exemplo n.º 3
0
    print('Predicting bid prices using linear bidding strategy model:')
    for i in range(0, n):
        progress(i+1, n)
        bidid = validationDF.bidid.values[i]
        advertiser = validationDF.advertiser.values[i]
        baseBidPrice = int(base_bidprices[advertiser] * pctrs[i] / avgCTR)
        bids[bidid] = baseBidPrice

    return bids


clearTerminal()

start = time.time()
print('Start')

trainingDF = pd.read_csv('train.csv')
validationDF = pd.read_csv('validation.csv')

transformCategoricalFeatures(trainingDF)
transformCategoricalFeatures(validationDF)

base_bidprices = train()
bids = predict(base_bidprices)
evaluate(bids, 'validation.csv', 6250)

end = time.time()
printElapsedTime(start, end)

print('Finish')
Exemplo n.º 4
0
        if click_valid[i] == 1:
            print(i, linear_scale_factors[i], logistic_scale_factors[i])
            clicked_linear_scale_factors.append(linear_scale_factors[i])
            clicked_logistic_scale_factors.append(logistic_scale_factors[i])

linear_scaled_bidprices = scaleBids(bidprice_pred, linear_scale_factors)
logistic_scaled_bidprices = scaleBids(bidprice_pred, logistic_scale_factors)

unscaled_bids = dict(zip(bidid_valid, bidprice_pred))
linear_scaled_bids = dict(zip(bidid_valid, linear_scaled_bidprices))
logistic_scaled_bids = dict(zip(bidid_valid, logistic_scaled_bidprices))

if SOLUTION:
    out = open('testing_bidding_price.csv', 'w')
    out.write('bidid,bidprice\n')
    for i in range(0, len(linear_scaled_bidprices)):
        out.write(
            str(bidid_valid[i]) + ',' + str(ceil(linear_scaled_bidprices[i])) +
            '\n')
    out.flush()
    out.close()
else:
    evaluate(unscaled_bids, 'validation.csv', 6250)
    evaluate(logistic_scaled_bids, 'validation.csv', 6250)
    evaluate(linear_scaled_bids, 'validation.csv', 6250)

end = time.time()
printElapsedTime(start, end)

print('Finish')