Exemplo n.º 1
0
def test_ic_fl_max_ctc():
    # Testing dataset with negative fl_max_ctc values
    ddict = example_data_dict(size=8472, keys=["fl1_max_ctc"])
    ddict["fl1_max_ctc"] -= min(ddict["fl1_max_ctc"]) + 1
    ds = new_dataset(ddict)
    with check.IntegrityChecker(ds) as ic:
        cues = ic.check_fl_max_ctc_positive()
    assert cues[0].level == "alert"
    assert cues[0].category == "feature data"

    # Testing dataset with fl_max_ctc values of 0.1
    ddict = example_data_dict(size=8472, keys=["fl1_max_ctc"])
    ddict["fl1_max_ctc"] -= min(ddict["fl1_max_ctc"]) - 0.1
    ds = new_dataset(ddict)
    with check.IntegrityChecker(ds) as ic:
        cues = ic.check_fl_max_ctc_positive()
    assert cues[0].level == "alert"
    assert cues[0].category == "feature data"

    # Testing dataset with fl_max_ctc values > 0.1
    ddict = example_data_dict(size=8472, keys=["fl1_max_ctc"])
    ddict["fl1_max_ctc"] -= min(ddict["fl1_max_ctc"]) - 1
    ds = new_dataset(ddict)
    with check.IntegrityChecker(ds) as ic:
        cues = ic.check_fl_max_ctc_positive()
    assert not cues
Exemplo n.º 2
0
def test_kde_log_scatter():
    ddict = example_data_dict(size=300, keys=["area_um", "deform"])
    ddict["deform"][:20] = .1
    ddict["area_um"][:20] = .5
    ds = dclab.new_dataset(ddict)
    a = ds.get_kde_scatter(yscale="log")
    assert np.all(a[:20] == a[0])
def test_invert_copy():
    dclab.PolygonFilter.clear_all_filters()
    ddict = example_data_dict(size=1234, keys=["area_um", "deform"])
    ds = dclab.new_dataset(ddict)
    # points of polygon filter
    points = [[np.min(ddict["area_um"]), np.min(ddict["deform"])],
              [np.min(ddict["area_um"]), np.max(ddict["deform"])],
              [np.average(ddict["area_um"]), np.max(ddict["deform"])],
              [np.average(ddict["area_um"]), np.min(ddict["deform"])],
              ]
    filt1 = dclab.PolygonFilter(axes=["area_um", "deform"],
                                points=points,
                                inverted=False)
    ds.polygon_filter_add(filt1)
    assert [0] == ds.config["filtering"]["polygon filters"]
    n1 = np.sum(ds._filter)
    ds.apply_filter()
    n2 = np.sum(ds._filter)
    assert n1 != n2
    filt2 = filt1.copy(invert=True)
    ds.polygon_filter_add(filt2)
    assert [0, 1] == ds.config["filtering"]["polygon filters"]
    ds.apply_filter()
    assert np.sum(ds._filter) == 0, "inverted+normal filter filters all"
    dclab.PolygonFilter.clear_all_filters()
Exemplo n.º 4
0
def test_shape_dict_trace():
    ddict = example_data_dict(size=67, keys=["area_um", "deform", "trace"])
    ds = new_dataset(ddict)
    assert ds["trace"].shape == (6, 67, 100)
    assert len(ds["trace"]) == 6
    assert len(ds["trace"]["fl1_raw"]) == 67
    assert len(ds["trace"]["fl1_raw"][0]) == 100
Exemplo n.º 5
0
def test_af_emodulus_reservoir():
    """Reservoir measurements should not have emodulus"""
    keys = ["area_um", "deform"]
    ddict = example_data_dict(size=8472, keys=keys)
    # legacy
    ds = dclab.new_dataset(ddict)
    ds.config["setup"]["flow rate"] = 0.16
    ds.config["setup"]["channel width"] = 30
    ds.config["imaging"]["pixel size"] = .34
    ds.config["calculation"] = {"emodulus lut": "LE-2D-FEM-19",
                                "emodulus medium": "CellCarrier",
                                "emodulus temperature": 23.0,
                                "emodulus viscosity": 0.5
                                }
    assert "emodulus" in ds
    ds2 = dclab.new_dataset(ddict)
    ds2.config["setup"]["flow rate"] = 0.16
    ds2.config["setup"]["channel width"] = 30
    ds2.config["imaging"]["pixel size"] = .34
    ds2.config["calculation"] = {"emodulus lut": "LE-2D-FEM-19",
                                 "emodulus medium": "CellCarrier",
                                 "emodulus temperature": 23.0,
                                 "emodulus viscosity": 0.5
                                 }
    ds2.config["setup"]["chip region"] = "reservoir"
    assert "emodulus" not in ds2
Exemplo n.º 6
0
def test_hdf5_filtered():
    N = 10
    keys = ["area_um", "image"]
    ddict = example_data_dict(size=N, keys=keys)
    ddict["image"][3] = np.arange(10 * 20, dtype=np.uint8).reshape(10, 20) + 22

    ds1 = dclab.new_dataset(ddict)
    ds1.config["experiment"]["sample"] = "test"
    ds1.config["experiment"]["run index"] = 1
    ds1.filter.manual[2] = False
    ds1.apply_filter()
    fta = ds1.filter.manual.copy()

    edest = tempfile.mkdtemp()
    f1 = join(edest, "dclab_test_export_hdf5_filtered.rtdc")
    ds1.export.hdf5(f1, keys)

    ds2 = dclab.new_dataset(f1)

    assert ds1 != ds2
    assert np.allclose(ds2["area_um"], ds1["area_um"][fta])
    assert np.allclose(ds2["image"][2], ds1["image"][3])
    assert np.all(ds2["image"][2] != ds1["image"][2])

    # cleanup
    shutil.rmtree(edest, ignore_errors=True)
def test_collect_data_tree():
    features = ["area_um", "deform", "time"]
    edest = pathlib.Path(tempfile.mkdtemp(prefix="shapeout_test"))

    for ii in range(1, 4):
        dat = new_dataset(data=example_data_dict(ii + 10, keys=features))
        cfg = {"experiment": {"sample": "test sample",
                              "run index": ii},
               "imaging": {"pixel size": 0.34},
               "setup": {"channel width": 20,
                         "chip region": "channel",
                         "flow rate": 0.04}
               }
        dat.config.update(cfg)
        dat.export.hdf5(path=edest / "{}.rtdc".format(ii),
                        features=features)
    data = meta_tool.collect_data_tree([edest])[0]
    assert len(data) == 1, "only one data folder"
    assert len(data[0]) == 4, "three measurements"

    # check name
    assert data[0][0][0] == "test sample"

    # check order
    assert data[0][1][1].endswith("1.rtdc")
    assert data[0][2][1].endswith("2.rtdc")
    assert data[0][3][1].endswith("3.rtdc")
    shutil.rmtree(str(edest), ignore_errors=True)
def test_collect_data_tree_order():
    features = ["area_um", "deform", "time"]
    edest = pathlib.Path(tempfile.mkdtemp(prefix="shapeout_test"))

    for ii in range(1, 13):
        dat = new_dataset(data=example_data_dict(ii + 10, keys=features))
        cfg = {"experiment": {"sample": "test sample",
                              "run index": ii},
               "imaging": {"pixel size": 0.34},
               "setup": {"channel width": 20,
                         "chip region": "channel",
                         "flow rate": 0.04}
               }
        dat.config.update(cfg)
        dat.export.hdf5(path=edest / "M{}_data.rtdc".format(ii),
                        features=features)
    data = meta_tool.collect_data_tree([edest])[0]
    assert pathlib.Path(data[0][1][1]).name == "M1_data.rtdc"
    assert pathlib.Path(data[0][2][1]).name == "M2_data.rtdc"
    assert pathlib.Path(data[0][3][1]).name == "M3_data.rtdc"
    assert pathlib.Path(data[0][4][1]).name == "M4_data.rtdc"
    assert pathlib.Path(data[0][5][1]).name == "M5_data.rtdc"
    assert pathlib.Path(data[0][6][1]).name == "M6_data.rtdc"
    assert pathlib.Path(data[0][7][1]).name == "M7_data.rtdc"
    assert pathlib.Path(data[0][8][1]).name == "M8_data.rtdc"
    assert pathlib.Path(data[0][9][1]).name == "M9_data.rtdc"
    assert pathlib.Path(data[0][10][1]).name == "M10_data.rtdc"
    assert pathlib.Path(data[0][11][1]).name == "M11_data.rtdc"
    assert pathlib.Path(data[0][12][1]).name == "M12_data.rtdc"
    shutil.rmtree(str(edest), ignore_errors=True)
Exemplo n.º 9
0
def test_with_rtdc_warning():
    keys = ["area_um", "deform"]
    ddict = example_data_dict(size=8472, keys=keys)
    # legacy
    ds = dclab.new_dataset(ddict)
    ds.config["setup"]["flow rate"] = 0.16
    ds.config["setup"]["channel width"] = 30
    ds.config["setup"]["medium"] = "CellCarrier"
    ds.config["imaging"]["pixel size"] = .34
    i1 = iso.get_default()
    with warnings.catch_warnings(record=True) as w:
        # Cause all warnings to always be triggered.
        warnings.simplefilter("always")
        # Trigger a warning (temperature missing).
        i1.get_with_rtdcbase(col1="area_um",
                             col2="deform",
                             lut_identifier="LE-2D-FEM-19",
                             dataset=ds,
                             viscosity=None,
                             add_px_err=False)
        # Verify some things
        assert len(w) == 1
        assert issubclass(w[-1].category,
                          iso.IsoelasticsEmodulusMeaninglessWarning)
        assert "plotting" in str(w[-1].message)
Exemplo n.º 10
0
def test_manual_exclude():
    data = example_data_dict(42, keys=["area_um", "deform"])
    p = new_dataset(data)
    c1 = new_dataset(p)
    c2 = new_dataset(c1)
    c3 = new_dataset(c2)
    c1.filter.manual[0] = False
    c2.apply_filter()
    c2.filter.manual[1] = False
    c3.apply_filter()

    # simple exclusion of few events
    assert len(c3) == len(p) - 2

    # removing same event in parent removes the event from the
    # child altogether, including the manual filter
    c3.filter.manual[0] = False
    c2.filter.manual[0] = False
    c3.apply_filter()
    assert np.alltrue(c3.filter.manual)

    # reinserting the event in the parent, retrieves back
    # the manual filter in the child
    c2.filter.manual[0] = True
    c3.apply_filter()
    assert not c3.filter.manual[0]
def test_invert_saveload():
    dclab.PolygonFilter.clear_all_filters()
    ddict = example_data_dict(size=1234, keys=["area_um", "deform"])
    # points of polygon filter
    points = [[np.min(ddict["area_um"]), np.min(ddict["deform"])],
              [np.min(ddict["area_um"]), np.max(ddict["deform"])],
              [np.average(ddict["area_um"]), np.max(ddict["deform"])],
              [np.average(ddict["area_um"]), np.min(ddict["deform"])],
              ]
    filt1 = dclab.PolygonFilter(axes=["area_um", "deform"],
                                points=points,
                                inverted=True)
    name = tempfile.mktemp(prefix="test_dclab_polygon_")
    filt1.save(name)
    filt2 = dclab.PolygonFilter(filename=name)
    assert filt2 == filt1

    filt3 = dclab.PolygonFilter(axes=["area_um", "deform"],
                                points=points,
                                inverted=False)
    try:
        os.remove(name)
    except OSError:
        pass

    name = tempfile.mktemp(prefix="test_dclab_polygon_")
    filt3.save(name)
    filt4 = dclab.PolygonFilter(filename=name)
    assert filt4 == filt3
    try:
        os.remove(name)
    except OSError:
        pass
Exemplo n.º 12
0
def test_register_external_lut_and_get_emodulus():
    keys = ["area_um", "deform"]
    ddict = example_data_dict(size=8472, keys=keys)
    # from internal LUT
    ds = dclab.new_dataset(ddict)
    ds.config["setup"]["flow rate"] = 0.16
    ds.config["setup"]["channel width"] = 30
    ds.config["imaging"]["pixel size"] = .34
    ds.config["calculation"] = {"emodulus lut": "LE-2D-FEM-19",
                                "emodulus medium": "CellCarrier",
                                "emodulus temperature": 23.0
                                }
    assert np.sum(~np.isnan(ds["emodulus"])) > 0
    # from external LUT
    identifier = "test-test_register_external_lut"
    path = resource_filename("dclab.features.emodulus",
                             emodulus.load.INTERNAL_LUTS["LE-2D-FEM-19"])
    emodulus.register_lut(path, identifier=identifier)
    ds2 = dclab.new_dataset(ddict)
    ds2.config["setup"]["flow rate"] = 0.16
    ds2.config["setup"]["channel width"] = 30
    ds2.config["imaging"]["pixel size"] = .34
    ds2.config["calculation"] = {"emodulus lut": identifier,
                                 "emodulus medium": "CellCarrier",
                                 "emodulus temperature": 23.0
                                 }
    assert np.sum(~np.isnan(ds2["emodulus"])) > 0
    assert np.allclose(ds["emodulus"], ds2["emodulus"], equal_nan=True,
                       rtol=0, atol=1e-15)
Exemplo n.º 13
0
def test_af_emodulus_visc_only_2():
    keys = ["area_um", "deform"]
    ddict = example_data_dict(size=8472, keys=keys)
    visc = dclab.features.emodulus.viscosity.get_viscosity(
        medium="CellCarrier",
        channel_width=30,
        flow_rate=0.16,
        temperature=23.0)
    # legacy
    ds = dclab.new_dataset(ddict)
    ds.config["setup"]["flow rate"] = 0.16
    ds.config["setup"]["channel width"] = 30
    ds.config["imaging"]["pixel size"] = .34
    ds.config["calculation"] = {"emodulus lut": "LE-2D-FEM-19",
                                "emodulus medium": "other",
                                "emodulus temperature": 47.0,  # irrelevant
                                "emodulus viscosity": visc
                                }
    # visc-only
    ds2 = dclab.new_dataset(ddict)
    ds2.config["setup"]["flow rate"] = 0.16
    ds2.config["setup"]["channel width"] = 30
    ds2.config["imaging"]["pixel size"] = .34
    ds2.config["calculation"] = {"emodulus lut": "LE-2D-FEM-19",
                                 "emodulus viscosity": visc
                                 }
    assert np.sum(~np.isnan(ds["emodulus"])) > 0
    assert np.allclose(ds["emodulus"], ds2["emodulus"], equal_nan=True,
                       rtol=0, atol=1e-15)
Exemplo n.º 14
0
def test_collect_data_tree():
    features = ["area_um", "deform", "time"]
    edest = pathlib.Path(tempfile.mkdtemp(prefix="shapeout_test"))

    for ii in range(1, 4):
        dat = new_dataset(data=example_data_dict(ii + 10, keys=features))
        cfg = {"experiment": {"sample": "test sample",
                              "run index": ii},
               "imaging": {"pixel size": 0.34},
               "setup": {"channel width": 20,
                         "chip region": "channel",
                         "flow rate": 0.04}
               }
        dat.config.update(cfg)
        dat.export.hdf5(path=edest / "{}.rtdc".format(ii),
                        features=features)
    data = meta_tool.collect_data_tree([edest])[0]
    assert len(data) == 1, "only one data folder"
    assert len(data[0]) == 4, "three measurements"

    # check name
    assert data[0][0][0] == "test sample"

    # check order
    assert data[0][1][1].endswith("1.rtdc")
    assert data[0][2][1].endswith("2.rtdc")
    assert data[0][3][1].endswith("3.rtdc")
    shutil.rmtree(str(edest), ignore_errors=True)
Exemplo n.º 15
0
def test_with_rtdc():
    keys = ["area_um", "deform"]
    ddict = example_data_dict(size=8472, keys=keys)
    # legacy
    ds = dclab.new_dataset(ddict)
    ds.config["setup"]["flow rate"] = 0.16
    ds.config["setup"]["channel width"] = 30
    ds.config["setup"]["temperature"] = 23.0
    ds.config["setup"]["medium"] = "CellCarrier"
    ds.config["imaging"]["pixel size"] = .34
    i1 = iso.get_default()
    data1 = i1.get_with_rtdcbase(col1="area_um",
                                 col2="deform",
                                 lut_identifier="LE-2D-FEM-19",
                                 dataset=ds,
                                 viscosity=None,
                                 add_px_err=False)

    viscosity = emodulus.viscosity.get_viscosity(
        medium="CellCarrier",
        channel_width=ds.config["setup"]["channel width"],
        flow_rate=ds.config["setup"]["flow rate"],
        temperature=ds.config["setup"]["temperature"])
    data2 = i1.get(col1="area_um",
                   col2="deform",
                   lut_identifier="LE-2D-FEM-19",
                   channel_width=ds.config["setup"]["channel width"],
                   flow_rate=ds.config["setup"]["flow rate"],
                   viscosity=viscosity,
                   add_px_err=False,
                   px_um=ds.config["imaging"]["pixel size"])
    for d1, d2 in zip(data1, data2):
        assert np.allclose(d1, d2, atol=0, rtol=1e-14)
Exemplo n.º 16
0
def test_kde_log_scatter():
    ddict = example_data_dict(size=300, keys=["area_um", "deform"])
    ddict["deform"][:20] = .1
    ddict["area_um"][:20] = .5
    ds = dclab.new_dataset(ddict)
    a = ds.get_kde_scatter(yscale="log")
    assert np.all(a[:20] == a[0])
Exemplo n.º 17
0
def test_manual_exclude_parent_changed():
    data = example_data_dict(42, keys=["area_um", "tilt"])
    p = new_dataset(data)
    p.filter.manual[4] = False
    c = new_dataset(p)
    c.filter.manual[5] = False
    c.apply_filter()
    p.config["filtering"]["tilt min"] = 0
    p.config["filtering"]["tilt max"] = .5
    p.apply_filter()
    assert np.sum(p.filter.all) == 21
    # size of child is directly determined from parent
    assert len(c) == 21
    # filters have not yet been updated
    assert len(c.filter.all) == 41
    assert c.filter.parent_changed
    # the initially excluded event
    assert c.filter.retrieve_manual_indices(c) == [6]

    # try to change the excluded events
    try:
        c.filter.apply_manual_indices(c, [1, 2])
    except fmt_hierarchy.HierarchyFilterError:
        pass
    else:
        assert False, "expected HierarchyFilterError"

    # this can be resolved by applying the filter
    c.apply_filter()
    c.filter.apply_manual_indices(c, [1, 2])
    assert c.filter.retrieve_manual_indices(c) == [1, 2]
Exemplo n.º 18
0
def test_invert_copy():
    dclab.PolygonFilter.clear_all_filters()
    ddict = example_data_dict(size=1234, keys=["aspect", "tilt"])
    ds = dclab.new_dataset(ddict)
    # points of polygon filter
    points = [[np.min(ddict["aspect"]), np.min(ddict["tilt"])],
              [np.min(ddict["aspect"]), np.max(ddict["tilt"])],
              [np.average(ddict["aspect"]), np.max(ddict["tilt"])],
              [np.average(ddict["aspect"]), np.min(ddict["tilt"])],
              ]
    filt1 = dclab.PolygonFilter(axes=["aspect", "tilt"],
                                points=points,
                                inverted=False)
    ds.polygon_filter_add(filt1)
    assert [0] == ds.config["filtering"]["polygon filters"]
    n1 = np.sum(ds.filter.all)
    ds.apply_filter()
    n2 = np.sum(ds.filter.all)
    assert n1 != n2
    filt2 = filt1.copy(invert=True)
    ds.polygon_filter_add(filt2)
    assert [0, 1] == ds.config["filtering"]["polygon filters"]
    ds.apply_filter()
    assert np.sum(ds.filter.all) == 0, "inverted+normal filter filters all"
    dclab.PolygonFilter.clear_all_filters()
Exemplo n.º 19
0
def test_invert_saveload():
    dclab.PolygonFilter.clear_all_filters()
    ddict = example_data_dict(size=1234, keys=["aspect", "tilt"])
    # points of polygon filter
    points = [[np.min(ddict["aspect"]), np.min(ddict["tilt"])],
              [np.min(ddict["aspect"]), np.max(ddict["tilt"])],
              [np.average(ddict["aspect"]), np.max(ddict["tilt"])],
              [np.average(ddict["aspect"]), np.min(ddict["tilt"])],
              ]
    filt1 = dclab.PolygonFilter(axes=["aspect", "tilt"],
                                points=points,
                                inverted=True)
    name = tempfile.mktemp(prefix="test_dclab_polygon_")
    filt1.save(name)
    filt2 = dclab.PolygonFilter(filename=name)
    assert filt2 == filt1

    filt3 = dclab.PolygonFilter(axes=["aspect", "tilt"],
                                points=points,
                                inverted=False)
    try:
        os.remove(name)
    except OSError:
        pass

    name = tempfile.mktemp(prefix="test_dclab_polygon_")
    filt3.save(name)
    filt4 = dclab.PolygonFilter(filename=name)
    assert filt4 == filt3
    try:
        os.remove(name)
    except OSError:
        pass
Exemplo n.º 20
0
def test_get_feat_range_opt():
    keys = ["area_um", "deform", "fl1_max"]
    dicts = [example_data_dict(s, keys) for s in [10, 100, 12, 382]]
    # add a fl2_max column with negative numbers
    for dd in dicts:
        lend = len(dd["deform"])
        dd["fl2_max"] = np.linspace(-1, 5000, lend)
        dd["userdef1"] = np.linspace(-2, -3, lend)
        dd["userdef2"] = np.linspace(-1, 1, lend)
    #dicts.append(otherdict)
    anal = analysis.Analysis([dclab.new_dataset(d) for d in dicts])
    assert anal.get_feat_range_opt(feature="deform") == (0, .2)
    assert np.allclose(anal.get_feat_range_opt(feature="area_um"),
                       (0.000507009623987198, 0.9989715591819257))
    assert np.allclose(anal.get_feat_range_opt(feature="fl1_max"),
                       (0.0036766675498647317, 0.9970937546290722))
    assert np.allclose(anal.get_feat_range_opt(feature="fl1_max", scale="log"),
                       (0.0036766675498647317, 0.9970937546290722))
    assert np.allclose(anal.get_feat_range_opt(feature="fl2_max"), (-1, 5000))
    assert np.allclose(anal.get_feat_range_opt(feature="fl2_max", scale="log"),
                       (1, 5000))
    assert np.allclose(anal.get_feat_range_opt(feature="userdef1"), (-3, -2))
    assert np.allclose(
        anal.get_feat_range_opt(feature="userdef1", scale="log"), (.1, 1))
    assert np.allclose(anal.get_feat_range_opt(feature="userdef2"), (-1, 1))
    assert np.allclose(
        anal.get_feat_range_opt(feature="userdef2", scale="log"),
        (0.051197602631569354, 1.0))
Exemplo n.º 21
0
def test_kde_log_scatter_points():
    ddict = example_data_dict(size=300, keys=["area_um", "deform"])
    ds = dclab.new_dataset(ddict)
    a = ds.get_kde_scatter(yscale="log")
    b = ds.get_kde_scatter(yscale="log",
                           positions=[ds["area_um"], ds["deform"]])

    assert np.all(a == b)
def test_wrong_things():
    ddict = example_data_dict(size=67, keys=["area_um", "deform"])
    ds = new_dataset(ddict)
    # Check unknown variable (warning will be displayed
    try:
        ds.apply_filter(force=["on_purpose_unknown"])
    except ValueError:
        pass
Exemplo n.º 23
0
def test_downsample_none():
    keys = ["area_um", "deform", "time", "frame", "fl3_width"]
    ddict = example_data_dict(size=8472, keys=keys)
    ds = dclab.new_dataset(ddict)

    ds.apply_filter()
    _, _, idx = ds.get_downsampled_scatter(downsample=0, ret_mask=True)
    assert np.sum(idx) == 8472
Exemplo n.º 24
0
def test_data_size():
    dicts = [example_data_dict(s) for s in [10, 100, 12, 382]]
    anal = analysis.Analysis([dclab.new_dataset(d) for d in dicts])

    minsize = anal.ForceSameDataSize()
    assert minsize == 10
    for mm in anal.measurements:
        assert np.sum(mm._filter) == minsize
Exemplo n.º 25
0
def test_tsv_not_filtered():
    keys = ["area_um", "deform", "time", "frame", "fl3_width"]
    ddict = example_data_dict(size=127, keys=keys)
    ds = dclab.new_dataset(ddict)

    edest = tempfile.mkdtemp()
    f1 = join(edest, "test.tsv")
    ds.export.tsv(f1, keys, filtered=False)
Exemplo n.º 26
0
def test_axes_usable():
    keys = ["area_um", "circ"]
    dicts = [example_data_dict(s, keys=keys) for s in [10, 100, 12, 382]]
    anal = analysis.Analysis([dclab.new_dataset(d) for d in dicts])

    axes = anal.GetUsableAxes()
    for ax in keys:
        assert ax in axes
Exemplo n.º 27
0
def test_filter_manual():
    # make sure min/max values are filtered
    ddict = example_data_dict(size=8472, keys=["area_um", "deform"])
    ds = new_dataset(ddict)
    ds.filter.manual[[0, 8471]] = False
    ds.apply_filter()
    assert len(ds["deform"][ds.filter.all]) == 8470
    assert ds["deform"][1] == ds["deform"][ds.filter.all][0]
Exemplo n.º 28
0
def test_wrong_things():
    ddict = example_data_dict(size=67, keys=["area_um", "deform"])
    ds = new_dataset(ddict)
    # Check unknown variable (warning will be displayed
    try:
        ds.apply_filter(force=["on_purpose_unknown"])
    except ValueError:
        pass
Exemplo n.º 29
0
def test_index_deep_contour():
    data = example_data_dict(42, keys=["area_um", "contour", "deform"])
    ds = new_dataset(data)
    ds.filter.manual[3] = False
    c1 = new_dataset(ds)
    c1.filter.manual[1] = False
    c2 = new_dataset(c1)
    assert np.all(c2["contour"][3] == ds["contour"][5])
Exemplo n.º 30
0
def test_ic_flow_rate_not_zero():
    ddict = example_data_dict(size=8472, keys=["area_um", "deform"])
    ds = new_dataset(ddict)
    ds.config["setup"]["flow rate"] = 0
    with check.IntegrityChecker(ds) as ic:
        cues = ic.check_metadata_bad_greater_zero()
    assert cues[0].category == "metadata wrong"
    assert cues[0].cfg_section == "setup"
    assert cues[0].cfg_key == "flow rate"
Exemplo n.º 31
0
def test_ic_expand_section():
    ddict = example_data_dict(size=8472, keys=["area_um", "deform"])
    ds1 = new_dataset(ddict)
    ds2 = new_dataset(ddict)
    with check.IntegrityChecker(ds1) as ic:
        cues1 = ic.check_metadata_missing(expand_section=True)
    with check.IntegrityChecker(ds2) as ic:
        cues2 = ic.check_metadata_missing(expand_section=False)
    assert len(cues1) > len(cues2)
Exemplo n.º 32
0
def test_ic_fl_metadata_channel_names_2():
    ddict = example_data_dict(size=8472, keys=["area_um", "deform"])
    ds = new_dataset(ddict)
    ds.config["fluorescence"]["channel 1 name"] = "peter"
    with check.IntegrityChecker(ds) as ic:
        cues = ic.check_fl_metadata_channel_names()
    assert cues[0].category == "metadata invalid"
    assert cues[0].cfg_section == "fluorescence"
    assert cues[0].cfg_key == "channel 1 name"
Exemplo n.º 33
0
def test_temperature():
    # there are probably a million things wrong with this dataset, but
    # we are only looking for the temperature thing
    ddict = example_data_dict(size=8472, keys=["area_um", "deform", "temp"])
    ds = new_dataset(ddict)
    sstr = "Metadata: Missing key [setup] 'temperature', " \
           + "because the 'temp' feature is given"
    _, aler, _ = check_dataset(ds)
    assert sstr in aler
def test_downsample_none():
    keys = ["area_um", "deform", "time", "frame", "fl3_width"]
    ddict = example_data_dict(size=8472, keys=keys)
    ds = dclab.new_dataset(ddict)

    assert np.sum(ds._plot_filter) == 8472
    ds.apply_filter()
    ds.get_downsampled_scatter(downsample=0)
    assert np.sum(ds._plot_filter) == 8472
Exemplo n.º 35
0
def test_ic_metadata_choices_medium():
    ddict = example_data_dict(size=8472, keys=["area_um", "deform"])
    ds = new_dataset(ddict)
    ds.config["setup"]["medium"] = "honey"
    with check.IntegrityChecker(ds) as ic:
        cues = ic.check_metadata_choices()
    # changed in 0.29.1: medium can now be an arbitrary string
    # except for an empty string.
    assert len(cues) == 0
Exemplo n.º 36
0
def test_disable_filters():
    """Disabling the filters should only affect RTDCBase.filter.all"""
    ddict = example_data_dict(size=8472, keys=["area_um", "deform"])
    ds = new_dataset(ddict)
    ds.filter.manual[[0, 8471]] = False
    ds.apply_filter()
    ds.config["filtering"]["enable filters"] = False
    ds.apply_filter()
    assert np.alltrue(ds.filter.all)
Exemplo n.º 37
0
def test_kde_positions():
    ddict = example_data_dict()
    ds = dclab.new_dataset(ddict)

    ds.config["filtering"]["enable filters"] = False
    sc = ds.get_kde_scatter(xax="area_um", yax="deform")
    sc2 = ds.get_kde_scatter(xax="area_um", yax="deform",
                             positions=(ds["area_um"], ds["deform"]))
    assert np.all(sc == sc2)
Exemplo n.º 38
0
def test_ic_fl_metadata_channel_names():
    ddict = example_data_dict(size=8472, keys=["area_um", "deform", "fl1_max"])
    ddict["trace"] = {"fl1_raw": [range(10)] * 1000}
    ds = new_dataset(ddict)
    with check.IntegrityChecker(ds) as ic:
        cues = ic.check_fl_metadata_channel_names()
    assert cues[0].category == "metadata missing"
    assert cues[0].cfg_section == "fluorescence"
    assert cues[0].cfg_key == "channel 1 name"
Exemplo n.º 39
0
def test_kde_log_contour():
    ddict = example_data_dict(size=300, keys=["area_um", "deform"])
    ddict["deform"][:20] = .1
    ddict["area_um"][:20] = .5
    ds = dclab.new_dataset(ddict)
    xm, ym, _ = ds.get_kde_contour(yscale="log")
    dx = np.diff(xm[0])
    dy = np.diff(np.log(ym[:, 0]))
    assert np.allclose(dx, dx[0])
    assert np.allclose(dy, dy[0])
Exemplo n.º 40
0
def test_af_emodulus_legacy_none2():
    keys = ["area_um", "deform"]
    ddict = example_data_dict(size=8472, keys=keys)
    ds = dclab.new_dataset(ddict)
    assert "emodulus" not in ds, "not config for emodulus"
    ds.config["calculation"] = {"emodulus medium": "CellCarrier",
                                "emodulus temperature": 23.0,
                                "emodulus viscosity": 0.5
                                }
    assert "emodulus" not in ds, "emodulus lut should be missing"
Exemplo n.º 41
0
def test_kde_nofilt():
    ddict = example_data_dict()
    ds = dclab.new_dataset(ddict)
    ds.config["filtering"]["enable filters"] = False
    sc = ds.get_kde_scatter()
    cc = ds.get_kde_contour()
    assert sc.shape[0] == 100
    # This will fail if the default contour accuracy is changed
    # in `get_kde_contour`.
    assert cc[0].shape == (43, 41)
Exemplo n.º 42
0
def test_0error():
    keys = ["circ"]
    ddict = example_data_dict(size=8472, keys=keys)
    ds = dclab.new_dataset(ddict)
    try:
        ds["unknown_column"]
    except KeyError:
        pass
    else:
        raise ValueError("Should have raised KeyError!")
Exemplo n.º 43
0
def test_af_0error():
    keys = ["circ"]
    ddict = example_data_dict(size=8472, keys=keys)
    ds = dclab.new_dataset(ddict)
    try:
        ds["unknown_column"]
    except KeyError:
        pass
    else:
        raise ValueError("Should have raised KeyError!")
Exemplo n.º 44
0
def test_emodulus_none2():
    keys = ["area_um", "deform"]
    ddict = example_data_dict(size=8472, keys=keys)
    ds = dclab.new_dataset(ddict)
    assert "emodulus" not in ds, "not config for emodulus"
    ds.config["calculation"] = {"emodulus medium": "CellCarrier",
                                "emodulus temperature": 23.0,
                                "emodulus viscosity": 0.5
                                }
    assert "emodulus" not in ds, "emodulus model should be missing"
Exemplo n.º 45
0
def test_tsv_not_filtered():
    keys = ["area_um", "deform", "time", "frame", "fl3_width"]
    ddict = example_data_dict(size=127, keys=keys)
    ds = dclab.new_dataset(ddict)

    edest = tempfile.mkdtemp()
    f1 = join(edest, "test.tsv")
    ds.export.tsv(f1, keys, filtered=False)

    # cleanup
    shutil.rmtree(edest, ignore_errors=True)
def test_min_max_update():
    ddict = example_data_dict(size=67, keys=["area_um", "deform"])
    ds = new_dataset(ddict)
    cfg = ds.config.copy()

    # Force updating circularity
    cfg["filtering"]["defo min"] = .4
    cfg["filtering"]["defo max"] = .8
    ds.config.update(cfg)

    ds.apply_filter()
def test_limit_above():
    keys = ["area_um", "deform", "time", "frame"]
    ddict = example_data_dict(size=9999, keys=keys)
    ds = dclab.new_dataset(ddict)

    assert np.sum(ds._filter) == 9999
    filtflt = {"limit events": 10000}

    cfg = {"filtering": filtflt}
    ds.config.update(cfg)
    ds.apply_filter()

    assert np.sum(ds._filter) == 9999
Exemplo n.º 48
0
def test_kde_log_scatter_invalid():
    ddict = example_data_dict(size=300, keys=["area_um", "deform"])
    ddict["deform"][:20] = .1
    ddict["area_um"][:20] = .5
    ddict["deform"][21] = np.nan
    ddict["deform"][22] = np.inf
    ddict["deform"][23] = -.1
    ds = dclab.new_dataset(ddict)
    a = ds.get_kde_scatter(yscale="log")
    assert np.all(a[:20] == a[0])
    assert np.isnan(a[21])
    assert np.isnan(a[22])
    assert np.isnan(a[23])
Exemplo n.º 49
0
def test_kde_general():
    # Download and extract data
    ddict = example_data_dict()
    ds = dclab.new_dataset(ddict)

    dcont = []
    dscat = []
    for kde_type in dclab.kde_methods.methods:
        dcont.append(ds.get_kde_contour(kde_type=kde_type))
        dscat.append(ds.get_kde_scatter(kde_type=kde_type))

    for ii in range(1, len(dcont) - 1):
        assert not np.allclose(dcont[ii], dcont[0])
        assert not np.allclose(dscat[ii], dscat[0])
Exemplo n.º 50
0
def test_avi_no_images():
    keys = ["area_um", "deform", "time", "frame", "fl3_width"]
    ddict = example_data_dict(size=127, keys=keys)
    ds = dclab.new_dataset(ddict)

    edest = tempfile.mkdtemp()
    f1 = join(edest, "test.avi")
    try:
        ds.export.avi(f1)
    except OSError:
        pass
    else:
        raise ValueError("There should be no image data to write!")
    shutil.rmtree(edest, ignore_errors=True)
def test_downsample_up():
    """
    Likely causes removal of too many points and requires
    re-inserting them.
    """
    keys = ["area_um", "deform", "time", "frame", "fl3_width"]
    ddict = example_data_dict(size=10000, keys=keys)
    ds = dclab.new_dataset(ddict)

    assert np.sum(ds._plot_filter) == 10000

    ds.apply_filter()
    ds.get_downsampled_scatter(downsample=9999)
    assert np.sum(ds._plot_filter) == 9999
    ds.get_downsampled_scatter(downsample=9999)
Exemplo n.º 52
0
def test_filter_min_max():
    # make sure min/max values are filtered
    ddict = example_data_dict(size=8472, keys=["area_um", "deform"])
    ds = new_dataset(ddict)
    amin, amax = ds["area_um"].min(), ds["area_um"].max()
    ds.config["filtering"]["area_um min"] = (amax + amin) / 2
    ds.config["filtering"]["area_um max"] = amax
    ds.apply_filter()
    assert np.sum(ds.filter.all) == 4256

    # make sure data is not filtered before calling ds.apply_filter
    dmin, dmax = ds["deform"].min(), ds["deform"].max()
    ds.config["filtering"]["deform min"] = (dmin + dmax) / 2
    ds.config["filtering"]["deform max"] = dmax
    assert np.sum(ds.filter.all) == 4256
Exemplo n.º 53
0
def test_fcs_override():
    keys = ["area_um", "deform", "time", "frame", "fl3_width"]
    ddict = example_data_dict(size=212, keys=keys)
    ds = dclab.new_dataset(ddict)

    edest = tempfile.mkdtemp()
    f1 = join(edest, "test.fcs")
    ds.export.fcs(f1, keys, override=True)
    try:
        ds.export.fcs(f1[:-4], keys, override=False)
    except OSError:
        pass
    else:
        raise ValueError("Should append .fcs and not override!")

    # cleanup
    shutil.rmtree(edest, ignore_errors=True)
def test_inverted_wrong():
    dclab.PolygonFilter.clear_all_filters()
    ddict = example_data_dict(size=1234, keys=["area_um", "deform"])
    # points of polygon filter
    points = [[np.min(ddict["area_um"]), np.min(ddict["deform"])],
              [np.min(ddict["area_um"]), np.max(ddict["deform"])],
              [np.average(ddict["area_um"]), np.max(ddict["deform"])],
              [np.average(ddict["area_um"]), np.min(ddict["deform"])],
              ]
    try:
        dclab.PolygonFilter(axes=["area_um", "deform"],
                            points=points,
                            inverted=0)
    except dclab.polygon_filter.PolygonFilterError:
        pass
    else:
        raise ValueError("inverted should only be allowed to be bool")
def test_downsample_nan():
    """Deal with nans"""
    keys = ["area_um", "deform", "time", "frame", "fl3_width"]
    ddict = example_data_dict(size=8472, keys=keys)
    ddict["area_um"][:4700] = np.nan
    ds = dclab.new_dataset(ddict)
    ds.config["filtering"]["limit events"] = 2000

    assert np.sum(ds.filter.all) == 8472

    ds.apply_filter()

    assert np.sum(ds.filter.all) == 2000
    # this is the general test; nans are included
    assert np.sum(np.isnan(ds["area_um"][ds.filter.all])) != 0
    # this is the exact test (e.g. for the random state used)
    assert np.sum(np.isnan(ds["area_um"][ds.filter.all])) == 1150
Exemplo n.º 56
0
def test_emodulus_area():
    # computes "area_um" from "area_cvx"
    keys = ["area_cvx", "deform"]
    ddict = example_data_dict(size=8472, keys=keys)
    ds = dclab.new_dataset(ddict)
    # area can be computed from areapix
    ds.config["imaging"]["pixel size"] = .34
    assert "area_um" in ds
    assert "emodulus" not in ds, "not config for emodulus"
    ds.config["setup"]["flow rate"] = 0.16
    ds.config["setup"]["channel width"] = 30
    ds.config["calculation"] = {"emodulus medium": "CellCarrier",
                                "emodulus model": "elastic sphere",
                                "emodulus temperature": 23.0,
                                "emodulus viscosity": 0.5
                                }
    assert "emodulus" in ds
def test_downsample_log():
    keys = ["area_um", "deform", "time", "frame", "fl3_width"]
    ddict = example_data_dict(size=8472, keys=keys)
    ds = dclab.new_dataset(ddict)

    ds.apply_filter()
    xlin, ylin = ds.get_downsampled_scatter(downsample=100,
                                            xscale="linear",
                                            yscale="linear")
    xlog, ylog = ds.get_downsampled_scatter(downsample=100,
                                            xscale="log",
                                            yscale="log")
    assert not np.all(xlin == xlog)
    assert not np.all(ylin == ylog)
    for x in xlog:
        assert x in ds["area_um"]
    for y in ylog:
        assert y in ds["deform"]
Exemplo n.º 58
0
def test_collect_data_tree_unicode():
    features = ["area_um", "deform", "time"]
    edest = pathlib.Path(tempfile.mkdtemp(prefix="shapeout_test"))
    from shapeout.util import safe_path
    for ii in range(1, 4):
        dat = new_dataset(data=example_data_dict(ii + 10, keys=features))
        cfg = {"experiment": {"sample": "test sample",
                              "run index": ii},
               "imaging": {"pixel size": 0.34},
               "setup": {"channel width": 20,
                         "chip region": "channel",
                         "flow rate": 0.04}
               }
        dat.config.update(cfg)
        dat.export.hdf5(path=safe_path(edest / "únícòdè_{}.rtdc".format(ii)),
                        features=features)
    meta_tool.collect_data_tree([edest])[0]
    shutil.rmtree(str(edest), ignore_errors=True)
Exemplo n.º 59
0
def test_emodulus():
    keys = ["area_um", "deform"]
    ddict = example_data_dict(size=8472, keys=keys)
    ds = dclab.new_dataset(ddict)
    ds.config["setup"]["flow rate"] = 0.16
    ds.config["setup"]["channel width"] = 30
    ds.config["imaging"]["pixel size"] = .34
    ds.config["calculation"] = {"emodulus medium": "CellCarrier",
                                "emodulus model": "elastic sphere",
                                "emodulus temperature": 23.0,
                                "emodulus viscosity": 0.5
                                }
    t1 = time.time()
    assert "emodulus" in ds
    t2 = time.time()

    t3 = time.time()
    ds["emodulus"]
    t4 = time.time()
    assert t4 - t3 > t2 - t1
Exemplo n.º 60
0
def test_false_method():
    def bad_method(x):
        return x + 1
    dclab.statistics.Statistics(name="bad",
                                req_feature=False,
                                method=bad_method)
    ddict = example_data_dict(size=77, keys=["area_um", "deform"])
    ds = dclab.new_dataset(ddict)
    head1, vals1 = dclab.statistics.get_statistics(ds, features=["deform"])
    out = {}
    for h, v in zip(head1, vals1):
        out[h] = v
    assert np.isnan(out["bad"])

    # clean up
    mth = dclab.statistics.Statistics.available_methods
    for k in mth:
        if k == "bad":
            mth.pop(k)
            break