Exemplo n.º 1
0
 def dilated_res_block(self, feature, xyz, neigh_idx, d_out, name,
                       is_training):  # 参照Dilated Residual Block结构图
     # Shared MLP(N,dout/2)
     f_pc = helper_tf_util.conv2d(feature, d_out // 2, [1, 1],
                                  name + 'mlp1', [1, 1], 'VALID', True,
                                  is_training)
     # 局部特征聚合模块( LoscSe,Attenntive Pooling)
     f_pc = self.building_block(xyz, f_pc, neigh_idx, d_out, name + 'LFA',
                                is_training)
     # Shared MLP (N,2dout)
     f_pc = helper_tf_util.conv2d(f_pc,
                                  d_out * 2, [1, 1],
                                  name + 'mlp2', [1, 1],
                                  'VALID',
                                  True,
                                  is_training,
                                  activation_fn=None)
     # Shared MLP (N,2dout)
     shortcut = helper_tf_util.conv2d(feature,
                                      d_out * 2, [1, 1],
                                      name + 'shortcut', [1, 1],
                                      'VALID',
                                      activation_fn=None,
                                      bn=True,
                                      is_training=is_training)
     # sum,lrelu
     return tf.nn.leaky_relu(f_pc + shortcut)
Exemplo n.º 2
0
    def gt_res_block(self, feature, xyz, neigh_idx, d_out, name, is_training):
        # xyz : pyt = b, n, 3  & tf = b, n, 3
        # feature : pyt = b, c, n, 1 & tf = b, n, 1, c
        # neigh_idx : pyt = b, n, k & tf = b, n, k
        f_pc = helper_tf_util.conv2d(feature, d_out // 2, [1, 1],
                                     name + 'mlp1', [1, 1], 'VALID', True,
                                     is_training)
        stored_f_pc, f_pc = self.gtmodule(xyz, f_pc, neigh_idx, d_out,
                                          name + 'LFA', is_training)
        f_pc = helper_tf_util.conv2d(f_pc,
                                     d_out * 2, [1, 1],
                                     name + 'mlp2', [1, 1],
                                     'VALID',
                                     True,
                                     is_training,
                                     activation_fn=None)
        stored_f_pc = helper_tf_util.conv2d(stored_f_pc,
                                            d_out * 2, [1, 1],
                                            name + 'mlp2_for_store', [1, 1],
                                            'VALID',
                                            True,
                                            is_training,
                                            activation_fn=None)
        #stored_value = helper_tf_util.conv2d(localvalue, d_out, [1, 1], name + 'conv_for_store', [1, 1], 'VALID', True, is_training)

        shortcut = helper_tf_util.conv2d(feature,
                                         d_out * 2, [1, 1],
                                         name + 'shortcut', [1, 1],
                                         'VALID',
                                         activation_fn=None,
                                         bn=True,
                                         is_training=is_training)

        return tf.nn.leaky_relu(stored_f_pc +
                                shortcut), tf.nn.leaky_relu(f_pc + shortcut)
Exemplo n.º 3
0
 def dilated_res_block(self, feature, xyz, neigh_idx, d_out, name, is_training):
     f_pc = helper_tf_util.conv2d(feature, d_out // 2, [1, 1], name + 'mlp1', [1, 1], 'VALID', True, is_training)
     f_pc = self.building_block(xyz, f_pc, neigh_idx, d_out, name + 'LFA', is_training)
     f_pc = helper_tf_util.conv2d(f_pc, d_out * 2, [1, 1], name + 'mlp2', [1, 1], 'VALID', True, is_training,
                                  activation_fn=None)
     shortcut = helper_tf_util.conv2d(feature, d_out * 2, [1, 1], name + 'shortcut', [1, 1], 'VALID',
                                      activation_fn=None, bn=True, is_training=is_training)
     return tf.nn.leaky_relu(f_pc + shortcut)
Exemplo n.º 4
0
    def building_block(self, xyz, feature, neigh_idx, d_out, name, is_training):
        d_in = feature.get_shape()[-1].value
        f_xyz = self.relative_pos_encoding(xyz, neigh_idx)
        f_xyz = helper_tf_util.conv2d(f_xyz, d_in, [1, 1], name + 'mlp1', [1, 1], 'VALID', True, is_training)
        f_neighbours = self.gather_neighbour(tf.squeeze(feature, axis=2), neigh_idx)
        f_concat = tf.concat([f_neighbours, f_xyz], axis=-1)
        f_pc_agg = self.att_pooling(f_concat, d_out // 2, name + 'att_pooling_1', is_training)

        f_xyz = helper_tf_util.conv2d(f_xyz, d_out // 2, [1, 1], name + 'mlp2', [1, 1], 'VALID', True, is_training)
        f_neighbours = self.gather_neighbour(tf.squeeze(f_pc_agg, axis=2), neigh_idx)
        f_concat = tf.concat([f_neighbours, f_xyz], axis=-1)
        f_pc_agg = self.att_pooling(f_concat, d_out, name + 'att_pooling_2', is_training)
        return f_pc_agg
Exemplo n.º 5
0
    def inference(self, inputs, is_training):

        d_out = self.config.d_out
        feature = inputs['features']
        feature = tf.layers.dense(feature, 8, activation=None, name='fc0')
        feature = tf.nn.leaky_relu(tf.layers.batch_normalization(feature, -1, 0.99, 1e-6, training=is_training))
        feature = tf.expand_dims(feature, axis=2)

        # ###########################Encoder############################
        f_encoder_list = []
        for i in range(self.config.num_layers):
            
            #ES TODO: check 'self.dilated_res_block' and convert to our implementation, GT_res_blocks.
            #f_encoder_i = self.dilated_res_block(feature, inputs['xyz'][i], inputs['neigh_idx'][i], d_out[i],
            s_encoder_i, f_encoder_i = self.gt_res_block(feature, inputs['xyz'][i], inputs['neigh_idx'][i], d_out[i],'Encoder_layer_' + str(i), is_training, i)
            #print("{} : {}".format(i, f_encoder_i.shape))
            f_sampled_i = self.random_sample(f_encoder_i, inputs['sub_idx'][i])
            s_sampled_i = self.random_sample(s_encoder_i, inputs['sub_idx'][i])

            feature = s_sampled_i
            
            if i == 0:
                f_encoder_list.append(f_encoder_i)
            f_encoder_list.append(f_sampled_i)
        # ###########################Encoder############################

        feature = helper_tf_util.conv2d(f_encoder_list[-1], f_encoder_list[-1].get_shape()[3].value, [1, 1],
                                        'decoder_0',
                                        [1, 1], 'VALID', True, is_training)

        # ###########################Decoder############################
        f_decoder_list = []
        for j in range(self.config.num_layers):
            f_interp_i = self.nearest_interpolation(feature, inputs['interp_idx'][-j - 1])
            f_decoder_i = helper_tf_util.conv2d_transpose(tf.concat([f_encoder_list[-j - 2], f_interp_i], axis=3),
                                                          f_encoder_list[-j - 2].get_shape()[-1].value, [1, 1],
                                                          'Decoder_layer_' + str(j), [1, 1], 'VALID', bn=True,
                                                          is_training=is_training)
            feature = f_decoder_i
            f_decoder_list.append(f_decoder_i)
        # ###########################Decoder############################

        f_layer_fc1 = helper_tf_util.conv2d(f_decoder_list[-1], 64, [1, 1], 'fc1', [1, 1], 'VALID', True, is_training)
        f_layer_fc2 = helper_tf_util.conv2d(f_layer_fc1, 32, [1, 1], 'fc2', [1, 1], 'VALID', True, is_training)
        f_layer_drop = helper_tf_util.dropout(f_layer_fc2, keep_prob=0.5, is_training=is_training, scope='dp1')
        f_layer_fc3 = helper_tf_util.conv2d(f_layer_drop, self.config.num_classes, [1, 1], 'fc', [1, 1], 'VALID', False,
                                            is_training, activation_fn=None)
        f_out = tf.squeeze(f_layer_fc3, [2])
        return f_out
    def building_block(self, xyz, feature, K_points, neigh_idx, d_out, name,
                       is_training):
        d_in = feature.get_shape()[-1].value
        num_k = K_points.get_shape()[0].value
        xyz_neighbours = self.gather_neighbour(xyz, neigh_idx)
        xyz_neighbours = xyz_neighbours - tf.expand_dims(xyz, 2)
        xyz_neighbours = tf.expand_dims(xyz_neighbours, 3)
        xyz_neighbours = tf.tile(xyz_neighbours, [1, 1, 1, num_k, 1])
        differences = xyz_neighbours - K_points
        # Get the square distances [n_points, n_neighbors, n_kpoints]
        sq_distances = tf.reduce_sum(tf.square(differences), axis=4)
        all_weights = tf.maximum(1 - tf.sqrt(sq_distances), 0.2)

        f_xyz = self.relative_pos_encoding(xyz, neigh_idx)
        f_xyz = helper_tf_util.conv2d(f_xyz, d_in, [1, 1], name + 'mlp1',
                                      [1, 1], 'VALID', True, is_training)

        num_points = tf.shape(f_xyz)[1]
        num_f = f_xyz.get_shape()[3]
        f_xyz = tf.transpose(f_xyz, perm=[0, 1, 3, 2])
        f_xyz = tf.einsum("uvik,uvkj->uvij", f_xyz, all_weights)
        # f_xyz = tf.matmul(f_xyz, all_weights)
        f_xyz = tf.transpose(f_xyz, perm=[0, 1, 3, 2])
        f_xyz = tf.reshape(f_xyz, shape=[-1, num_points, num_k * num_f])
        f_pc_agg = helper_tf_util.conv1d(f_xyz, d_out, 1, name + 'mlp2', 1,
                                         'VALID', True, is_training)
        f_pc_agg = tf.reshape(f_pc_agg, [-1, num_points, 1, d_out])
        return f_pc_agg
Exemplo n.º 7
0
    def dualdis_att_pool(feature_set, f_dis, g_dis, d_out, name, is_training):
        """
        DDAP
        """
        batch_size = tf.shape(feature_set)[0]
        num_points = tf.shape(feature_set)[1]
        num_neigh = tf.shape(feature_set)[2]
        d = feature_set.get_shape()[3].value
        d_dis = g_dis.get_shape()[3].value

        f_reshaped = tf.reshape(feature_set, shape=[-1, num_neigh, d])
        f_dis_reshaped = tf.reshape(f_dis, shape=[-1, num_neigh, d_dis]) * 0.1
        g_dis_reshaped = tf.reshape(g_dis, shape=[-1, num_neigh, d_dis])
        concat = tf.concat([g_dis_reshaped, f_dis_reshaped, f_reshaped], axis=-1)

        # weight learning
        att_activation = tf.layers.dense(concat, d, activation=None, use_bias=False, name=name + 'dis_self_fc')
        att_scores = tf.nn.softmax(att_activation, axis=1)
        # dot product
        f_lc = f_reshaped * att_scores
        # sum
        f_lc = tf.reduce_sum(f_lc, axis=1)
        f_lc = tf.reshape(f_lc, [batch_size, num_points, 1, d])
        # shared MLP
        f_lc = helper_tf_util.conv2d(f_lc, d_out, [1, 1], name + 'mlp', [1, 1], 'VALID', True, is_training)

        return f_lc
Exemplo n.º 8
0
    def building_block(self, xyz, feature, neigh_idx, d_out, name,
                       is_training):

        d_in = feature.get_shape()[-1].value

        print("  check building block")
        print("  xyz", xyz.get_shape())  # ?, ?, 3
        print("  feature", feature.get_shape())  # ?, ?, 1, c
        print("  neigh", neigh_idx)

        f_xyz = self.relative_pos_encoding(xyz, neigh_idx)
        print("  f_xyz 1", f_xyz.get_shape())  # ?, ?, ?, 10
        f_xyz = helper_tf_util.conv2d(f_xyz, d_in, [1, 1], name + 'mlp1',
                                      [1, 1], 'VALID', True, is_training)
        print("  f_xyz 2", f_xyz.get_shape())  # ?, ?, ?, c
        f_neighbours = self.gather_neighbour(tf.squeeze(feature, axis=2),
                                             neigh_idx)

        f_concat = tf.concat([f_neighbours, f_xyz], axis=-1)
        f_pc_agg = self.att_pooling(f_concat, d_out // 2,
                                    name + 'att_pooling_1', is_training)

        f_xyz = helper_tf_util.conv2d(f_xyz, d_out // 2, [1, 1], name + 'mlp2',
                                      [1, 1], 'VALID', True, is_training)
        f_neighbours = self.gather_neighbour(tf.squeeze(f_pc_agg, axis=2),
                                             neigh_idx)
        f_concat = tf.concat([f_neighbours, f_xyz], axis=-1)
        f_pc_agg = self.att_pooling(f_concat, d_out, name + 'att_pooling_2',
                                    is_training)
        '''
        print("  check building block")
        print("  xyz", xyz.get_shape()) # ?, ?, 3
        print("  feature", feature.get_shape()) # ?, ?, 1, c
        #print("  d_in 1", d_in) # 1, c
        #print("  f_xyz 1", f_xyz.get_shape()) # ?, ?, ?, 10
        #print("  f_xyz 2", f_xyz.get_shape()) # ?, ?, ?, c
        print("  f_neighbours", f_neighbours.get_shape()) # ?, ?, ?, c
        print("  f_concat", f_concat.get_shape()) # ?, ?, ?, 2c
        print("  f_pc_agg", f_pc_agg.get_shape()) # ?, ?, 1, 8
        print("  f_xyz 3", f_xyz.get_shape()) # ?, ?, ?, c
        print("  f_neighbours", f_neighbours.get_shape()) # ?, ?, ?, c
        print("  f_concat", f_concat.get_shape()) # ?, ?, ?, c
        print("  f_pc_agg", f_pc_agg.get_shape()) # ?, ?, 1, 2c
        '''

        return f_pc_agg
Exemplo n.º 9
0
    def building_block(self, xyz, feature, K_points, K_padding, neigh_idx,
                       d_out, name, is_training):
        d_in = feature.get_shape()[-1]
        num_kpoints = K_points.get_shape()[0]
        batch_size = tf.shape(input=xyz)[0]
        num_points = tf.shape(input=xyz)[1]

        xyz_neighbours = self.gather_neighbour(xyz, neigh_idx)
        xyz_neighbours = xyz_neighbours - tf.expand_dims(xyz, 2)

        #### linear ####
        # xyz_neighbours = tf.expand_dims(xyz_neighbours, 3)
        # xyz_neighbours = tf.tile(xyz_neighbours, [1, 1, 1, num_kpoints, 1])
        # differences = xyz_neighbours - K_points
        # # Get the square distances [n_points, n_neighbors, n_kpoints]
        # sq_distances = tf.reduce_sum(input_tensor=tf.square(differences), axis=4)
        # all_weights = tf.maximum(1 - tf.sqrt(sq_distances), 0)
        #### cos ####
        all_weights = tf.tensordot(xyz_neighbours, K_points, [[3], [1]])
        all_weights = tf.maximum(all_weights, 0) + K_padding
        all_weights = all_weights / (
            tf.reduce_sum(all_weights, axis=2, keepdims=True) + 1e-6)
        all_weights = tf.square(all_weights)
        all_weights = all_weights / (
            tf.reduce_sum(all_weights, axis=2, keepdims=True) + 1e-6)
        all_weights = tf.where(all_weights < 0.1, 0., all_weights)
        #all_weights = tfa.activations.sparsemax(all_weights, axis=2)

        #### 1 ####
        f_xyz = self.relative_pos_encoding(xyz, neigh_idx)
        f_xyz = helper_tf_util.conv2d(f_xyz, d_in, [1, 1], name + 'mlp1',
                                      [1, 1], 'VALID', True, is_training)
        f_neighbours = self.gather_neighbour(tf.squeeze(feature, axis=2),
                                             neigh_idx)
        f_concat = tf.concat([f_neighbours, f_xyz], axis=-1)

        f_concat = tf.einsum(
            "uvki,uvkj->uvij", f_concat,
            all_weights)  # f_xyz = tf.matmul(f_xyz, all_weights)
        f_concat = tf.reshape(f_concat,
                              shape=[-1, num_points, num_kpoints * d_in * 2])
        f_pc_agg = helper_tf_util.conv1d(f_concat, d_out, 1,
                                         name + 'att_pooling_1', 1, 'VALID',
                                         True, is_training)
        f_pc_agg = tf.reshape(f_pc_agg, [-1, num_points, 1, d_out])

        # #### 2 ####
        # f_xyz = helper_tf_util.conv2d(f_xyz, d_out // 2, [1, 1], name + 'mlp2', [1, 1], 'VALID', True, is_training)
        # f_neighbours = self.gather_neighbour(tf.squeeze(f_pc_agg, axis=2), neigh_idx)
        # f_concat = tf.nn.leaky_relu(tf.concat([f_neighbours, f_xyz], axis=-1))

        # f_concat = tf.einsum("uvki,uvkj->uvij", f_concat, all_weights) # f_xyz = tf.matmul(f_xyz, all_weights)
        # f_concat = tf.reshape(f_concat, shape=[-1, num_points, num_kpoints*d_out])
        # f_pc_agg = helper_tf_util.conv1d(f_concat, d_out, 1, name + 'att_pooling_2', 1, 'VALID', True, is_training)
        # f_pc_agg = tf.reshape(f_pc_agg, [-1, num_points, 1, d_out])
        return f_pc_agg  #, all_weights
Exemplo n.º 10
0
    def scf_module(self, feature, xyz, neigh_idx, d_out, name, is_training):
        """
        SCF
        """
        # Local Contextual Features
        # MLP 1
        f_pc = helper_tf_util.conv2d(feature, d_out // 2, [1, 1], name + 'mlp1', [1, 1], 'VALID', True, is_training)
        # Local Context Learning (LPR + DDAP)
        f_lc, lg_volume_ratio = self.local_context_learning(xyz, f_pc, neigh_idx, d_out, name + 'LFA', is_training)
        # MLP 2
        f_lc = helper_tf_util.conv2d(f_lc, d_out * 2, [1, 1], name + 'mlp2', [1, 1], 'VALID', True, is_training, activation_fn=None)
        # MLP Shotcut
        shortcut = helper_tf_util.conv2d(feature, d_out * 2, [1, 1], name + 'shortcut', [1, 1], 'VALID', activation_fn=None, bn=True, is_training=is_training)
        
        # Global Contextual Features
        f_gc = tf.expand_dims(tf.concat([xyz, lg_volume_ratio], axis=-1), -2)
        f_gc = helper_tf_util.conv2d(f_gc, d_out * 2, [1, 1], name + 'lg', [1, 1], 'VALID', activation_fn=None, bn=True, is_training=is_training)

        return tf.nn.leaky_relu(tf.concat([f_lc + shortcut, f_gc], axis=-1))
Exemplo n.º 11
0
 def att_pooling(feature_set, d_out, name, is_training):
     batch_size = tf.shape(feature_set)[0]
     num_points = tf.shape(feature_set)[1]
     num_neigh = tf.shape(feature_set)[2]
     d = feature_set.get_shape()[3].value
     f_reshaped = tf.reshape(feature_set, shape=[-1, num_neigh, d])
     att_activation = tf.layers.dense(f_reshaped, d, activation=None, use_bias=False, name=name + 'fc')
     att_scores = tf.nn.softmax(att_activation, axis=1)
     f_agg = f_reshaped * att_scores
     f_agg = tf.reduce_sum(f_agg, axis=1)
     f_agg = tf.reshape(f_agg, [batch_size, num_points, 1, d])
     f_agg = helper_tf_util.conv2d(f_agg, d_out, [1, 1], name + 'mlp', [1, 1], 'VALID', True, is_training)
     return f_agg
Exemplo n.º 12
0
    def att_pooling(feature_set, d_out, name, is_training):
        d = feature_set.get_shape()[3].value

        a,b,c,d = feature_set.get_shape()
        
        f_reshaped = tf.reshape(feature_set, shape=[-1, self.n, d])
        att_activation = tf.layers.dense(f_reshaped, d, activation=None, use_bias=False, name=name + 'fc')
        att_scores = tf.nn.softmax(att_activation, axis=1)
        f_agg = f_reshaped * att_scores
        f_agg = tf.reduce_sum(f_agg, axis=1)
        f_agg = tf.reshape(f_agg, [self.b, self.n, 1, d])
        f_agg = helper_tf_util.conv2d(f_agg, d_out, [1, 1], name + 'mlp', [1, 1], 'VALID', True, is_training)
        return f_agg
Exemplo n.º 13
0
    def local_context_learning(self, xyz, feature, neigh_idx, d_out, name, is_training):
        """
        (LPR + DDAP) * 2
        """
        d_in = feature.get_shape()[-1].value
        # LPR
        local_rep, g_dis, lg_volume_ratio = self.local_polar_representation(xyz, neigh_idx)

        # 1
        local_rep = helper_tf_util.conv2d(local_rep, d_in, [1, 1], name + 'mlp1', [1, 1], 'VALID', True, is_training)
        f_neighbours = self.gather_neighbour(tf.squeeze(feature, axis=2), neigh_idx)
        f_concat = tf.concat([f_neighbours, local_rep], axis=-1)
        f_dis = self.cal_feature_dis(tf.squeeze(feature, axis=2), f_neighbours)
        f_lc = self.dualdis_att_pool(f_concat, f_dis, g_dis, d_out // 2, name + 'dis_att_pooling_1', is_training)

        # 2
        local_rep = helper_tf_util.conv2d(local_rep, d_out // 2, [1, 1], name + 'mlp2', [1, 1], 'VALID', True, is_training)
        f_neighbours = self.gather_neighbour(tf.squeeze(f_lc, axis=2), neigh_idx)
        f_concat = tf.concat([f_neighbours, local_rep], axis=-1)
        f_dis = self.cal_feature_dis(tf.squeeze(f_lc, axis=2), f_neighbours)
        f_lc = self.dualdis_att_pool(f_concat, f_dis, g_dis, d_out, name + 'dis_att_pooling_2', is_training)

        return f_lc, lg_volume_ratio
Exemplo n.º 14
0
    def gt_pooling(self, feature_set, d_out, name, is_training, neigh_idx, depth):
        # input;
        #   feature_set: b,n,k,g,d 
        # output;
        #   f_agg: b,n,g,d
        #   attention_centrality: b,g,n
        _,_,_,_,d = feature_set.get_shape()
        n = self.n // (4**depth)

        identity = feature_set
        print("gtp - feature_set bef", feature_set.shape)
        feature_set = tf.reshape(feature_set, [self.b, n, self.k, -1]) # b,n,k,g*10
        print("gtp - feature_set aft", feature_set.shape)

        att_activation = helper_tf_util.grouped_conv2d(name + 'gt_pooling', 
                                     x=feature_set, 
                                     w=None, 
                                     num_filters=d*self.g,
                                     kernel_size=(1, 1),
                                     padding='VALID',
                                     num_groups=self.g, 
                                     #l2_strength=0, 
                                     l2_strength=4e-5, 
                                     bias=0.0,
                                     activation=True,
                                     batchnorm_enabled=True, 
                                     is_training=is_training)
        
        att_activation = tf.reshape(att_activation, [self.b, n, self.k, self.g, d])
        print("gtp - att act", att_activation.shape)
        att_scores = tf.nn.softmax(att_activation, axis=2) # b,n,k,g,d//g
        print("gtp - att score", att_activation.shape)

        f_agg = identity * att_scores # b,n,k,g,d//g
        print("gtp - fagg", f_agg.shape)
        f_agg = tf.reduce_sum(f_agg, axis=2) # b,n,g,d//g
        print("gtp - red sum", f_agg.shape)
        f_agg = helper_tf_util.conv2d(f_agg, d_out, [1, 1], name + 'mlp', [1, 1], 'VALID', True, is_training)
        print("gtp - conv", f_agg.shape)
        
        # attention centrality
        att_scores = tf.reduce_sum(att_scores, axis=-1) # b,n,k,g
        att_scores = tf.transpose(att_scores, [0,3,1,2]) # b,g,n,k
        attention_centrality = self.attention_centrality(att_scores, neigh_idx, name, depth)

        print("gtp - after ac", f_agg.shape)
        return f_agg, attention_centrality
Exemplo n.º 15
0
    def gt_pooling(self, feature_set, d_out, name, is_training, neigh_idx):
        #TODO CHECK PLZ
        # input;
        #   feature_set: b,n,k,g,d
        # output;
        #   f_agg: b,n,g,d
        #   attention_centrality: b,g,n
        _, _, _, _, d = feature_set.get_shape()

        identity = feature_set
        feature_set = tf.reshape(feature_set,
                                 [self.b, self.n, self.k, -1])  # b,n,k,g*10

        att_activation = helper_tf_util.grouped_conv2d(
            name + 'gt_pooling',
            x=feature_set,
            w=None,
            num_filters=d * self.g,
            kernel_size=(1, 1),
            padding='VALID',
            num_groups=self.g,
            #l2_strength=0,
            l2_strength=4e-5,
            bias=0.0,
            activation=True,
            batchnorm_enabled=True,
            is_training=is_training)

        att_activation = tf.reshape(att_activation,
                                    [self.b, self.n, self.k, self.g, d])
        att_scores = tf.nn.softmax(att_activation, axis=2)  # b,n,k,g,d//g

        f_agg = identity * att_scores  # b,n,k,g,d//g
        f_agg = tf.reduce_sum(f_agg, axis=2)  # b,n,g,d//g
        f_agg = helper_tf_util.conv2d(f_agg, d_out, [1, 1], name + 'mlp',
                                      [1, 1], 'VALID', True, is_training)

        # attention centrality
        att_scores = tf.reduce_sum(att_scores, axis=-1)  # b,n,g,k
        att_scores = tf.transpose(att_scores, [0, 2, 1, 3])  # b,g,n,k
        attention_centrality = self.attention_centrality(att_scores, neigh_idx)

        return f_agg, attention_centrality
Exemplo n.º 16
0
    def gt_pooling(feature_set, d_out, name, is_training, neigh_idx):
        print("      check att_pooling")
        print("      batch_size", batch_size)  # ? = b
        print("      num_points", num_points)  # ? = n
        print("      num_neigh", num_neigh)  # ? = k
        print("      d", d)  # c
        print(a, b, c, d)
        print("      f_reshaped", f_reshaped.get_shape())  # ?, ?, c
        print("      att_activation", att_activation.get_shape())  # ?, ?, c
        print("      att_scores", att_scores.get_shape())  # ?, ?, c
        print("      f_agg1", f_agg.get_shape())  # ?, ?, c
        print("      f_agg2", f_agg.get_shape())  # ?, c
        print("      f_agg3", f_agg.get_shape())  # ?, c
        print("      f_agg4", f_agg.get_shape())  # ?, c

        b, n, k, g, d = feature_set.get_shape()

        f_reshaped = tf.transpose(feature_set, perm=(0, 1, 3, 2, 4))
        f_reshaped = tf.reshape(f_reshaped, [-1, k, d])  # b*n*g, k, d
        att_activation = tf.layers.dense(f_reshaped,
                                         d,
                                         activation=None,
                                         use_bias=False,
                                         name=name + 'fc')  # b*n*g, k, d
        att_scores = tf.nn.softmax(att_activation,
                                   axis=1)  # b*n*g, k, d, softmaxed over k
        f_agg = f_reshaped * att_scores  # b*n*g, k, d
        f_agg = tf.reduce_sum(f_agg, axis=1)  # b*n*g, d
        f_agg = tf.reshape(f_agg, [b, n, g, d])

        f_agg = helper_tf_util.conv2d(f_agg, d_out, [1, 1], name + 'mlp',
                                      [1, 1], 'VALID', True, is_training)
        # attention centrality
        att_scores = tf.reshape(att_scores, [b, n, g, k, d])
        att_scores = tf.reduce_sum(att_scores, axis=-1)  # b,n,g,k
        attention_centrality = self.attention_centrality(att_scores, neigh_idx)

        return f_agg, attention_centrality
Exemplo n.º 17
0
    def att_pooling(feature_set, d_out, name, is_training):
        #f_pc_agg = self.att_pooling(f_concat, d_out // 2, name + 'att_pooling_1', is_training)
        print("      check att_pooling")
        print("      batch_size", batch_size)  # ? = b
        print("      num_points", num_points)  # ? = n
        print("      num_neigh", num_neigh)  # ? = k
        print("      d", d)  # c
        print(a, b, c, d)
        print("      f_reshaped", f_reshaped.get_shape())  # ?, ?, c
        print("      att_activation", att_activation.get_shape())  # ?, ?, c
        print("      att_scores", att_scores.get_shape())  # ?, ?, c
        print("      f_agg1", f_agg.get_shape())  # ?, ?, c
        print("      f_agg2", f_agg.get_shape())  # ?, c
        print("      f_agg3", f_agg.get_shape())  # ?, c
        print("      f_agg4", f_agg.get_shape())  # ?, c

        batch_size = tf.shape(feature_set)[0]
        num_points = tf.shape(feature_set)[1]
        num_neigh = tf.shape(feature_set)[2]
        d = feature_set.get_shape()[3].value

        a, b, c, d = feature_set.get_shape()

        f_reshaped = tf.reshape(feature_set, shape=[-1, num_neigh, d])
        att_activation = tf.layers.dense(f_reshaped,
                                         d,
                                         activation=None,
                                         use_bias=False,
                                         name=name + 'fc')
        att_scores = tf.nn.softmax(att_activation, axis=1)
        f_agg = f_reshaped * att_scores
        f_agg = tf.reduce_sum(f_agg, axis=1)
        f_agg = tf.reshape(f_agg, [batch_size, num_points, 1, d])
        f_agg = helper_tf_util.conv2d(f_agg, d_out, [1, 1], name + 'mlp',
                                      [1, 1], 'VALID', True, is_training)
        return f_agg
Exemplo n.º 18
0
    def gtmodule(self,
                 xyz,
                 feature,
                 neigh_idx,
                 d_out,
                 name,
                 is_training,
                 first=None):
        # xyz : pyt = b, n, 3  & tf = b, n, 3
        # feature : pyt = b, c, n, 1 & tf = b, n, 1, c
        # neigh_idx : pyt = b, n, k & tf = b, n, k
        b, n, _, d_in = feature.get_shape()
        g = self.config.groups
        k = self.config.num_neighbors

        neigh_idx = tf.expand_dims(neigh_idx, 1)
        neigh_idx = tf.repeat(neigh_idx, g, axis=1)  # b,g,n,k
        xyz = tf.expand_dims(xyz, 1)
        xyz = tf.repeat(xyz, g, axis=1)  # b,g,n,3
        localvalue = tf.reshape(feature, [b, n, g, -1])  # b,n,g,c//g
        localvalue = tf.transpose(localvalue, perm=(0, 2, 1, 3))

        # pointwisely concat feature and coordinates
        localvalue = tf.concat([localvalue, xyz])  # b,g,n,c//g+3

        # first local operation
        localvalue, f_xyz = group_gather_neighbour(
            localvalue, neigh_idx, None, d_in // g)  # b,g,n,k,c//g & b,g,n,k,3
        f_xyz = self.relative_pos_encoding(xyz, f_xyz)  # b,g,n,k,10
        f_xyz = tf.transpose(f_xyz, perm=(0, 2, 3, 1, 4))  # b,n,k,g,10
        d_int = f_xyz.get_shape()[4].value
        f_xyz = tf.reshape(f_xyz, [b, d_int * g, n, k])  # b,n,k,g*10
        f_xyz = helper_tf_util.conv2d(f_xyz,
                                      d_out // 2, [1, 1],
                                      name + 'mlp1', [1, 1],
                                      'VALID',
                                      True,
                                      is_training,
                                      groups=g)  # b,n,k,d_out//2
        f_xyz = tf.reshape(f_xyz, [b, n, k, g,
                                   (d_out // 2) // g])  #b,n,k,g,d_out//2*g
        #f_xyz = tf.transpose(f_xyz, perm=(0,3,4,))

        f1 = tf.concat(
            [localvalue,
             tf.reshape(f_xyz, [b, g, d_in // g, n, k])],
            dim=2)  # b,n,k,g,c//g+d_out//2*g
        v1, attention_centrality = self.gt_pooling(f1, d_out // 2,
                                                   name + 'gt_pooling_1',
                                                   is_training)

        ### ended up here

        f_concat = tf.concat(features, axis=1)  # b,g,n,k,d

        value = features[:, :, :, :, :cv]
        xyz = features[:, :, :, :, -3:]

        f_concat = tf.concat([f_neighbours, f_xyz], axis=-1)

        pool_features = tf.reshape(pool_features,
                                   [batch_size, -1, num_neigh, d])

        # local gathering and concat pe

        # local agg
        f_xyz = self.relative_pos_encoding(xyz, neigh_idx)
        f_xyz = helper_tf_util.conv2d(f_xyz, d_in, [1, 1], name + 'mlp1',
                                      [1, 1], 'VALID', True, is_training)
        print("  f_xyz 2", f_xyz.get_shape())  # ?, ?, ?, c =
        print("  f_neighbours", f_neighbours.get_shape())  # ?, ?, ?, c
        print("  f_concat", f_concat.get_shape())  # ?, ?, ?, 2c
        print("  f_pc_agg", f_pc_agg.get_shape())  # ?, ?, 1, 8
        f_neighbours = self.gather_neighbour(tf.squeeze(feature, axis=2),
                                             neigh_idx)
        f_concat = tf.concat([f_neighbours, f_xyz], axis=-1)
        f_pc_agg = self.att_pooling(f_concat, d_out // 2,
                                    name + 'att_pooling_1', is_training)
Exemplo n.º 19
0
    def inference(self, inputs, is_training):

        d_out = self.config.d_out
        feature = inputs['features']
        feature = tf.layers.dense(feature, 8, activation=None, name='fc0')
        feature = tf.nn.leaky_relu(tf.layers.batch_normalization(feature, -1, 0.99, 1e-6, training=is_training))
        feature = tf.expand_dims(feature, axis=2)

        # ###########################Encoder############################
        f_encoder_list = []
        for i in range(self.config.num_layers):
            f_encoder_i = self.dilated_res_block(feature, inputs['xyz'][i], inputs['neigh_idx'][i], d_out[i],
                                                 'Encoder_layer_' + str(i), is_training)
            f_sampled_i = self.random_sample(f_encoder_i, inputs['sub_idx'][i])
            feature = f_sampled_i
            if i == 0:
                f_encoder_list.append(f_encoder_i)
            f_encoder_list.append(f_sampled_i)
        # ###########################Encoder############################

        feature = helper_tf_util.conv2d(f_encoder_list[-1], f_encoder_list[-1].get_shape()[3].value, [1, 1],
                                        'decoder_0',
                                        [1, 1], 'VALID', True, is_training)


        # # bboxes head
        # bboxes_layer_fc1 = helper_tf_util.conv2d(f_encoder_list[-1], 64, [1, 1], 'bboxes_fc1', [1, 1], 'VALID', True, is_training)
        # bboxes_layer_fc2 = helper_tf_util.conv2d(bboxes_layer_fc1, 32, [1, 1], 'bboxes_fc2', [1, 1], 'VALID', True, is_training)
        # bboxes_layer_drop = helper_tf_util.dropout(bboxes_layer_fc2, keep_prob=0.5, is_training=is_training, scope='bboxes_dp1')
        # bboxes_layer_fc3 = helper_tf_util.conv2d(bboxes_layer_drop, self.num_target_attributes-1, [1, 1], 'bboxes_fc', [1, 1], 'VALID', False,
        #                                     is_training, activation_fn=None)
        # bboxes_out = tf.squeeze(bboxes_layer_fc3, [2])


        # # fgbg head
        # fgbg_layer_fc1 = helper_tf_util.conv2d(f_encoder_list[-1], 64, [1, 1], 'fgbg_fc1', [1, 1], 'VALID', True, is_training)
        # fgbg_layer_fc2 = helper_tf_util.conv2d(fgbg_layer_fc1, 32, [1, 1], 'fgbg_fc2', [1, 1], 'VALID', True, is_training)
        # fgbg_layer_drop = helper_tf_util.dropout(fgbg_layer_fc2, keep_prob=0.5, is_training=is_training, scope='fgbg_dp1')
        # fgbg_layer_fc3 = helper_tf_util.conv2d(fgbg_layer_drop, 1, [1, 1], 'fgbg_fc', [1, 1], 'VALID', False,
        #                                     is_training, activation_fn=None)
        # fgbg_out = tf.squeeze(fgbg_layer_fc3, [2])


        # # classification head

        # cls_layer_fc1 = helper_tf_util.conv2d(f_encoder_list[-1], 64, [1, 1], 'cls_fc1', [1, 1], 'VALID', True, is_training)
        # cls_layer_fc2 = helper_tf_util.conv2d(cls_layer_fc1, 32, [1, 1], 'cls_fc2', [1, 1], 'VALID', True, is_training)
        # cls_layer_drop = helper_tf_util.dropout(cls_layer_fc2, keep_prob=0.5, is_training=is_training, scope='cls_dp1')
        # cls_layer_fc3 = helper_tf_util.conv2d(cls_layer_drop, self.num_classes, [1, 1], 'cls_fc', [1, 1], 'VALID', False,
        #                                     is_training, activation_fn=None)
        # cls_out = tf.squeeze(cls_layer_fc3, [2])
        # return bboxes_out, fgbg_out, cls_out

        f_layer_fc1 = helper_tf_util.conv2d(f_encoder_list[-1], 64, [1, 1], 'fc1', [1, 1], 'VALID', True, is_training)
        f_layer_fc2 = helper_tf_util.conv2d(f_layer_fc1, 32, [1, 1], 'fc2', [1, 1], 'VALID', True, is_training)
        f_layer_drop = helper_tf_util.dropout(f_layer_fc2, keep_prob=0.5, is_training=is_training, scope='dp1')
        # f_layer_fc3 = helper_tf_util.conv2d(f_layer_drop, self.num_output_attributes, [1, 1], 'fc', [1, 1], 'VALID', False,
        #                                     is_training, activation_fn=None)
        f_layer_fc3 = helper_tf_util.conv2d(f_layer_drop, self.num_fgbg_attributes, [1, 1], 'fc', [1, 1], 'VALID', False,
                                    is_training, activation_fn=None)
        f_out = tf.squeeze(f_layer_fc3, [2])
        return f_out
Exemplo n.º 20
0
    def gtmodule(self, xyz, feature, neigh_idx, d_out, name, is_training, depth, first=None):
        # xyz : pyt = b, n, 3  & tf = b, n, 3 
        # feature : pyt = b, c, n, 1 & tf = b, n, 1, c
        # neigh_idx : pyt = b, n, k & tf = b, n, k
        _,_,_,d_in = feature.get_shape()
        ld_out = int(d_out * 0.75)
        nld_out = int(d_out * 0.25)
        n = self.n // (4**depth)
        
        print("depth : {}".format(depth))
        print("xyz", xyz.shape)
        print("fea", feature.shape)
        print("ldout", ld_out)
        print("nldout", nld_out)

        neigh_idx = tf.tile(tf.expand_dims(neigh_idx, axis=1), [1,self.g,1,1]) # b,1,n,k -> b,g,n,k
        xyz = tf.tile(tf.expand_dims(xyz, axis=1), [1,self.g,1,1]) # b,1,n,3 -> b,g,n,3

        # Stage1 : Local Layer
        localvalue = tf.reshape(feature, [-1, n, self.g, d_in//self.g]) # b,n,g,c//g
        print("lv - res", localvalue.shape)
        localvalue = tf.transpose(localvalue, perm=(0,2,1,3)) # b,g,n,c//g  
        print("lv - tra", localvalue.shape)
        
        # Pointwisely concat feature and coordinates
        localvalue = tf.concat([localvalue, xyz], axis=-1) # b,g,n,c//g+3  
        print("lv - cat", localvalue.shape)

        # First local operation
        localvalue, f_xyz = self.group_gather_neighbour(localvalue, neigh_idx, None, d_in//self.g) # b,g,n,k,c//g & b,g,n,k,3
        print("lv - gat", localvalue.shape)
        f_xyz = self.relative_pos_encoding(xyz, f_xyz) # b,g,n,k,10
        localvalue = tf.transpose(localvalue, perm=(0,2,3,1,4)) # b,n,k,g,c//g
        print("lv - tra", localvalue.shape)
        f_xyz = tf.transpose(f_xyz, perm=(0,2,3,1,4)) # b,n,k,g,10
        f_xyz = tf.reshape(f_xyz, [self.b, n, self.k, -1]) # b,n,k,g*10
        
        f_xyz = helper_tf_util.grouped_conv2d(name + 'local_pe', 
                                     x=f_xyz, 
                                     w=None, 
                                     num_filters=d_in, 
                                     kernel_size=(1, 1),
                                     padding='VALID',
                                     num_groups=self.g, 
                                     #l2_strength=0, 
                                     l2_strength=4e-5, 
                                     bias=0.0,
                                     activation=True,
                                     batchnorm_enabled=True, 
                                     is_training=is_training)

        f_xyz = tf.reshape(f_xyz, [self.b, n, self.k, self.g, d_in//self.g]) #b,n,k,g,d_in//g
        
        localvalue = tf.concat([localvalue, f_xyz], axis=-1) # b,n,k,g,2*d_in//g 
        print("lv - cat", localvalue.shape)
        localvalue, attention_centrality = self.gt_pooling(localvalue, ld_out//self.g, name + 'gt_pooling_1', is_training, neigh_idx, depth) 
        print("lv - gtp", localvalue.shape)


        # Stage2 : Global Layer

        # Global Indexing
        _, ac_idx = tf.math.top_k(attention_centrality, k=self.knl) # sorted? # bgk
        ac_idx = tf.tile(tf.expand_dims(ac_idx, axis=2), [1,1,n,1]) # bgk -> bgnk
        
        # Pointwisely concat feature and coordinates
        globalvalue = tf.concat([tf.transpose(localvalue, [0,2,1,3]), xyz], axis=-1) # b,g,n,c//g+3  
        print("gv - cat", localvalue.shape)

        # First local operation
        globalvalue, g_xyz = self.group_gather_neighbour(globalvalue, ac_idx, None, ld_out//self.g) # b,g,n,k,c//g & b,g,n,k,3
        print("gv - gat", localvalue.shape)
        g_xyz = self.relative_pos_encoding(xyz, g_xyz) # b,g,n,k,d
        globalvalue = tf.transpose(globalvalue, perm=(0,2,3,1,4)) # b,n,k,g,d
        print("gv - tra", localvalue.shape)
        g_xyz = tf.transpose(g_xyz, perm=(0,2,3,1,4)) # b,n,k,g,d
        g_xyz = tf.reshape(g_xyz, [self.b, n, self.k, -1]) # b,n,k,g*d

        g_xyz = helper_tf_util.grouped_conv2d(name + 'global_pe', 
                                     x=g_xyz, 
                                     w=None, 
                                     num_filters=ld_out, 
                                     kernel_size=(1, 1),
                                     padding='VALID',
                                     num_groups=self.g, 
                                     #l2_strength=0, 
                                     l2_strength=4e-5, 
                                     bias=0.0,
                                     activation=True,
                                     batchnorm_enabled=True, 
                                     is_training=is_training)
        g_xyz = tf.reshape(g_xyz, [self.b, n, self.k, self.g, ld_out//self.g]) #b,n,k,g,d_out//2*g
        globalvalue = tf.concat([globalvalue, g_xyz], axis=-1) # b,n,k,g,c//g+d_out//2*g 
        print("gv - cat", localvalue.shape)
        
        # Gating
        globalvalue, attention_centrality = self.gt_pooling(globalvalue, nld_out//self.g, name + 'gt_pooling_2', is_training, neigh_idx, depth) 
        print("gv - gtp", globalvalue.shape)
        
        globalvalue = globalvalue * tf.math.tanh(tf.expand_dims(tf.transpose(attention_centrality, [0,2,1]), axis=-1)) #bngc, bng1
        print("gv - tan", globalvalue.shape)
        
        # Cat Two
        localvalue = tf.reshape(localvalue, [self.b, n, 1, -1])
        globalvalue = tf.reshape(globalvalue, [self.b, n, 1, -1])
        print("lv - res", localvalue.shape)
        print("gv - res", globalvalue.shape)

        conferred_value = tf.concat([localvalue, globalvalue], axis=-1)
        print("cv", conferred_value.shape)
        conferred_value = tf.layers.batch_normalization(conferred_value, -1, 0.99, 1e-6, training=is_training)
        stored_value = helper_tf_util.conv2d(localvalue, d_out, [1, 1], name + 'conv_for_store', [1, 1], 'VALID', True, is_training)
        print("sv", stored_value.shape)
        
        return stored_value, conferred_value
Exemplo n.º 21
0
    def dilated_res_block2(self, feature, xyz, K_points, K_padding, neigh_idx,
                           d_out, name, is_training):
        d_in = feature.get_shape()[-1]
        num_kpoints = K_points.get_shape()[0]
        batch_size = tf.shape(input=xyz)[0]
        num_points = tf.shape(input=xyz)[1]

        ####### 1 #######
        f_xyz = tf.expand_dims(xyz, 2)
        #f_out_1 = helper_tf_util.conv2d(tf.concat([feature, f_xyz], axis=-1), d_out // 2, [1, 1], \
        #            name + 'mlp1', [1, 1], 'VALID', True, is_training)
        ####### 2,3,4 #######
        neighbor_xyz = self.gather_neighbour(xyz, neigh_idx)
        xyz_tile = tf.tile(f_xyz, [1, 1, tf.shape(input=neigh_idx)[-1], 1])
        relative_xyz = neighbor_xyz - xyz_tile
        relative_dis = tf.sqrt(
            tf.reduce_sum(input_tensor=tf.square(relative_xyz),
                          axis=-1,
                          keepdims=True))
        f_xyz = tf.concat([relative_dis, relative_xyz, xyz_tile, neighbor_xyz],
                          axis=-1)
        f_xyz = helper_tf_util.conv2d(f_xyz, d_in, [1, 1], name + 'mlp1',
                                      [1, 1], 'VALID', True, is_training)
        f_neighbours = self.gather_neighbour(tf.squeeze(feature, axis=2),
                                             neigh_idx)
        f_concat = tf.concat([f_neighbours, f_xyz], axis=-1)
        ####### 2 ####### #### cos ####
        all_weights = tf.tensordot(relative_xyz, K_points, [[3], [1]])
        all_weights = tf.maximum(all_weights, 0) + K_padding
        all_weights = all_weights / (
            tf.reduce_sum(all_weights, axis=2, keepdims=True) + 1e-6)
        all_weights = tf.square(all_weights)
        all_weights = all_weights / (
            tf.reduce_sum(all_weights, axis=2, keepdims=True) + 1e-6)
        all_weights = tf.where(all_weights < 0.1, 0., all_weights)

        f_pc_agg = tf.einsum(
            "uvki,uvkj->uvij", f_concat,
            all_weights)  # f_xyz = tf.matmul(f_xyz, all_weights)
        f_pc_agg = tf.reshape(f_pc_agg,
                              shape=[-1, num_points, num_kpoints * d_in * 2])
        f_pc_agg = helper_tf_util.conv1d(f_pc_agg, d_out // 2, 1,
                                         name + 'att_pooling_1', 1, 'VALID',
                                         True, is_training)
        f_out_2 = tf.reshape(f_pc_agg, [-1, num_points, 1, d_out // 2])
        ####### 3 #######
        f_out_3 = self.att_pooling(f_concat, d_out // 2,
                                   name + 'att_pooling_2', is_training)
        ####### 4 #######
        f_out_4 = helper_tf_util.conv2d(f_concat, d_out // 2, [1, 1],
                                        name + 'mlp3', [1, 1], 'VALID', True,
                                        is_training)
        f_out_4 = tf.reduce_max(f_out_4, axis=2, keepdims=True)

        f_out = tf.concat([f_out_2, f_out_3, f_out_4], axis=-1)
        f_out = helper_tf_util.conv2d(f_out_3, d_out * 2, [1, 1],
                                      name + 'mlp4', [1, 1], 'VALID', True,
                                      is_training)
        shortcut = helper_tf_util.conv2d(feature,
                                         d_out * 2, [1, 1],
                                         name + 'shortcut', [1, 1],
                                         'VALID',
                                         activation_fn=None,
                                         bn=True,
                                         is_training=is_training)
        return tf.nn.leaky_relu(f_out + shortcut)
Exemplo n.º 22
0
    def bilateral_context_block(self, feature, xyz, neigh_idx, d_out, name,
                                is_training):
        """
        Inputs: 
        feature: [B, N, 1, c] input features
        xyz: [B, N, 3] input coordinates
        neigh_idx: [B, N, k] indices of k neighbors

        Output:
        output_feat: [B, N, 1, 2*d_out] encoded (output) features
        shifted_neigh_xyz: [B, N, k, 3] shifted neighbor coordinates, for augmentation loss
        """
        batch_size = tf.shape(xyz)[0]
        num_points = tf.shape(xyz)[1]

        # Input Encoding
        feature = helper_tf_util.conv2d(feature, d_out // 2, [1, 1],
                                        name + 'mlp1', [1, 1], 'VALID', True,
                                        is_training)

        # Bilateral Augmentation
        neigh_feat = self.gather_neighbour(tf.squeeze(feature, axis=2),
                                           neigh_idx)  # B, N, k, d_out/2
        neigh_xyz = self.gather_neighbour(xyz, neigh_idx)  # B, N, k, 3
        tile_feat = tf.tile(feature,
                            [1, 1, self.config.k_n, 1])  # B, N, k, d_out/2
        tile_xyz = tf.tile(tf.expand_dims(xyz, axis=2),
                           [1, 1, self.config.k_n, 1])  # B, N, k, 3

        feat_info = tf.concat([neigh_feat - tile_feat, tile_feat],
                              axis=-1)  # B, N, k, d_out
        neigh_xyz_offsets = helper_tf_util.conv2d(feat_info,
                                                  xyz.get_shape()[-1].value,
                                                  [1, 1], name + 'mlp5',
                                                  [1, 1], 'VALID', True,
                                                  is_training)  # B, N, k, 3
        shifted_neigh_xyz = neigh_xyz + neigh_xyz_offsets  # B, N, k, 3

        xyz_info = tf.concat(
            [neigh_xyz - tile_xyz, shifted_neigh_xyz, tile_xyz],
            axis=-1)  # B, N, k, 9
        neigh_feat_offsets = helper_tf_util.conv2d(
            xyz_info,
            feature.get_shape()[-1].value, [1, 1], name + 'mlp6', [1, 1],
            'VALID', True, is_training)  # B, N, k, d_out/2
        shifted_neigh_feat = neigh_feat + neigh_feat_offsets  # B, N, k, d_out/2

        xyz_encoding = helper_tf_util.conv2d(xyz_info, d_out // 2, [1, 1],
                                             name + 'mlp7', [1, 1], 'VALID',
                                             True,
                                             is_training)  # B, N, k, d_out/2
        feat_info = tf.concat([shifted_neigh_feat, feat_info],
                              axis=-1)  # B, N, k, 3/2*d_out
        feat_encoding = helper_tf_util.conv2d(feat_info, d_out // 2, [1, 1],
                                              name + 'mlp8', [1, 1], 'VALID',
                                              True,
                                              is_training)  # B, N, k, d_out/2

        # Mixed Local Aggregation
        overall_info = tf.concat([xyz_encoding, feat_encoding],
                                 axis=-1)  # B, N, k, d_out
        k_weights = helper_tf_util.conv2d(overall_info,
                                          overall_info.get_shape()[-1].value,
                                          [1, 1],
                                          name + 'mlp9', [1, 1],
                                          'VALID',
                                          bn=False,
                                          activation_fn=None)  # B, N, k, d_out
        k_weights = tf.nn.softmax(k_weights, axis=2)  # B, N, k, d_out
        overall_info_weighted_sum = tf.reduce_sum(
            overall_info * k_weights, axis=2, keepdims=True)  # B, N, 1, d_out
        overall_info_max = tf.reduce_max(overall_info, axis=2,
                                         keepdims=True)  # B, N, 1, d_out
        overall_encoding = tf.concat(
            [overall_info_max, overall_info_weighted_sum],
            axis=-1)  # B, N, 1, 2*d_out

        # Output Encoding
        overall_encoding = helper_tf_util.conv2d(overall_encoding, d_out,
                                                 [1, 1], name + 'mlp10',
                                                 [1, 1], 'VALID', True,
                                                 is_training)  # B, N, 1, d_out
        output_feat = helper_tf_util.conv2d(
            overall_encoding,
            d_out * 2, [1, 1],
            name + 'mlp11', [1, 1],
            'VALID',
            True,
            is_training,
            activation_fn=tf.nn.leaky_relu)  # B, N, 1, 2*d_out
        return output_feat, shifted_neigh_xyz
Exemplo n.º 23
0
    def inference(self, inputs, is_training):

        d_out = self.config.d_out
        ratio = self.config.sub_sampling_ratio
        k_n = self.config.k_n
        feature = inputs['features']
        og_xyz = feature[:, :, :3]
        feature = tf.layers.dense(feature, 8, activation=None, name='fc0')
        feature = tf.nn.leaky_relu(
            tf.layers.batch_normalization(feature,
                                          -1,
                                          0.99,
                                          1e-6,
                                          training=is_training))
        feature = tf.expand_dims(feature, axis=2)

        # ###########################Encoder############################
        f_encoder_list = []
        input_xyz = og_xyz
        input_up_samples = []
        new_xyz_list = []
        xyz_list = []
        n_pts = self.config.num_points
        for i in range(self.config.num_layers):
            # Farthest Point Sampling:
            input_neigh_idx = tf.py_func(DP.knn_search,
                                         [input_xyz, input_xyz, k_n], tf.int32)
            n_pts = n_pts // ratio[i]
            sub_xyz, inputs_sub_idx = tf.cond(
                tf.equal(is_training, tf.constant(True)), lambda: sampling(
                    self.config.batch_size, n_pts, input_xyz, input_neigh_idx),
                lambda: sampling(self.config.val_batch_size, n_pts, input_xyz,
                                 input_neigh_idx))
            inputs_interp_idx = tf.py_func(DP.knn_search,
                                           [sub_xyz, input_xyz, 1], tf.int32)
            input_up_samples.append(inputs_interp_idx)

            # Bilateral Context Encoding
            f_encoder_i, new_xyz = self.bilateral_context_block(
                feature, input_xyz, input_neigh_idx, d_out[i],
                'Encoder_layer_' + str(i), is_training)
            f_sampled_i = self.random_sample(f_encoder_i, inputs_sub_idx)
            feature = f_sampled_i
            if i == 0:
                f_encoder_list.append(f_encoder_i)
            f_encoder_list.append(f_sampled_i)
            xyz_list.append(input_xyz)
            new_xyz_list.append(new_xyz)
            input_xyz = sub_xyz
        # ###########################Encoder############################

        # ###########################Decoder############################
        # Adaptive Fusion Module
        f_multi_decoder = []  # full-sized feature maps
        f_weights_decoders = []  # point-wise adaptive fusion weights
        for n in range(self.config.num_layers):
            feature = f_encoder_list[-1 - n]
            feature = helper_tf_util.conv2d(feature,
                                            feature.get_shape()[3].value,
                                            [1, 1], 'decoder_0' + str(n),
                                            [1, 1], 'VALID', True, is_training)
            f_decoder_list = []
            for j in range(self.config.num_layers - n):
                f_interp_i = self.nearest_interpolation(
                    feature, input_up_samples[-j - 1 - n])
                f_decoder_i = helper_tf_util.conv2d_transpose(
                    tf.concat([f_encoder_list[-j - 2 - n], f_interp_i],
                              axis=3),
                    f_encoder_list[-j - 2 - n].get_shape()[-1].value, [1, 1],
                    'Decoder_layer_' + str(n) + '_' + str(j), [1, 1],
                    'VALID',
                    bn=True,
                    is_training=is_training)
                feature = f_decoder_i
                f_decoder_list.append(f_decoder_i)
            # collect full-sized feature maps which are upsampled from multiple resolutions
            f_multi_decoder.append(f_decoder_list[-1])
            # summarize point-level information
            curr_weight = helper_tf_util.conv2d(f_decoder_list[-1],
                                                1, [1, 1],
                                                'Decoder_weight_' + str(n),
                                                [1, 1],
                                                'VALID',
                                                bn=False,
                                                activation_fn=None)
            f_weights_decoders.append(curr_weight)
        # regress the fusion parameters
        f_weights = tf.concat(f_weights_decoders, axis=-1)
        f_weights = tf.nn.softmax(f_weights, axis=-1)
        # adptively fuse them by calculating a weighted sum
        f_decoder_final = tf.zeros_like(f_multi_decoder[-1])
        for i in range(len(f_multi_decoder)):
            f_decoder_final = f_decoder_final + tf.tile(
                tf.expand_dims(f_weights[:, :, :, i], axis=-1),
                [1, 1, 1, f_multi_decoder[i].get_shape()[-1].value
                 ]) * f_multi_decoder[i]
        # ###########################Decoder############################

        f_layer_fc1 = helper_tf_util.conv2d(f_decoder_final, 64, [1, 1], 'fc1',
                                            [1, 1], 'VALID', True, is_training)
        f_layer_fc2 = helper_tf_util.conv2d(f_layer_fc1, 32, [1, 1], 'fc2',
                                            [1, 1], 'VALID', True, is_training)
        f_layer_drop = helper_tf_util.dropout(f_layer_fc2,
                                              keep_prob=0.5,
                                              is_training=is_training,
                                              scope='dp1')
        f_layer_fc3 = helper_tf_util.conv2d(f_layer_drop,
                                            self.config.num_classes, [1, 1],
                                            'fc', [1, 1],
                                            'VALID',
                                            False,
                                            is_training,
                                            activation_fn=None)
        f_out = tf.squeeze(f_layer_fc3, [2])
        return f_out, new_xyz_list, xyz_list
Exemplo n.º 24
0
    def inference(self, inputs, is_training):
        """similar to pytorch's forward() function where the RandLA-Net architecture is implemented by an encoder-decoder structure-yc
        In the encoder, LocSE block and RandomSampling is used where LocSE consists of gather_neighbors, relative_pos_encoding, att_pooling()
        In the decoder, nearest interpolation is used w. short-cut connections

        Args:
            inputs ([type]): a dict containing all kinds of required inputs
            is_training (bool): training or not

        Returns:
            tensor: logits for segmentation scores
        """

        d_out = self.config.d_out
        feature = inputs['features']  # (B,N,6)
        feature = tf.layers.dense(feature, 8, activation=None,
                                  name='fc0')  # (B,N,8)
        feature = tf.nn.leaky_relu(
            tf.layers.batch_normalization(feature,
                                          -1,
                                          0.99,
                                          1e-6,
                                          training=is_training))
        feature = tf.expand_dims(
            feature, axis=2)  # expand 1 more dim to use Conv2D ops, (B,N,1,8)

        # ###########################Encoder############################
        f_encoder_list = [
        ]  # in the end, collect num_layers + 1 items for a group of hierarchical point feature embeddings
        for i in range(self.config.num_layers):
            f_encoder_i = self.dilated_res_block(
                feature, inputs['xyz'][i], inputs['neigh_idx'][i], d_out[i],
                'Encoder_layer_' + str(i),
                is_training)  # similar to LAO for local feature learning
            f_sampled_i = self.random_sample(
                f_encoder_i,
                inputs['sub_idx'][i])  # down-sampled the input using the idx
            feature = f_sampled_i
            if i == 0:
                f_encoder_list.append(f_encoder_i)
            f_encoder_list.append(
                f_sampled_i
            )  # (B,N,1,32), (B,N/4,1,32), (B,N/16,1,128), (B,N/64,1,256), (B,N/256,1,512), (B,N/512,1,1024)
        # ###########################Encoder############################
        # transition using a MLP/pointwise Conv2D, e.g., (N/512,1024)-> (N/512,1024)
        feature = helper_tf_util.conv2d(
            f_encoder_list[-1], f_encoder_list[-1].get_shape()[3].value,
            [1, 1], 'decoder_0', [1, 1], 'VALID', True, is_training)

        # ###########################Decoder############################
        f_decoder_list = []
        for j in range(self.config.num_layers):
            f_interp_i = self.nearest_interpolation(
                feature, inputs['interp_idx'][-j - 1]
            )  # interpolate w. the idx, (B,N/512,1024)-> (B,N/256,1,1024)
            f_decoder_i = helper_tf_util.conv2d_transpose(
                tf.concat([f_encoder_list[-j - 2], f_interp_i], axis=3),
                f_encoder_list[-j - 2].get_shape()[-1].value, [1, 1],
                'Decoder_layer_' + str(j), [1, 1],
                'VALID',
                bn=True,
                is_training=is_training)  # shortcut connection
            feature = f_decoder_i
            f_decoder_list.append(f_decoder_i)  # upsampled point embeddings-yc
        # ###########################Decoder############################
        # obtain classification scores using FCs (8->64,32(w. dropouts),num_classes)
        f_layer_fc1 = helper_tf_util.conv2d(f_decoder_list[-1], 64, [1, 1],
                                            'fc1', [1, 1], 'VALID', True,
                                            is_training)
        f_layer_fc2 = helper_tf_util.conv2d(f_layer_fc1, 32, [1, 1], 'fc2',
                                            [1, 1], 'VALID', True, is_training)
        f_layer_drop = helper_tf_util.dropout(f_layer_fc2,
                                              keep_prob=0.5,
                                              is_training=is_training,
                                              scope='dp1')
        f_layer_fc3 = helper_tf_util.conv2d(
            f_layer_drop,
            self.config.num_classes, [1, 1],
            'fc', [1, 1],
            'VALID',
            False,
            is_training,
            activation_fn=None)  # (B,N,1,num_classes)
        f_out = tf.squeeze(f_layer_fc3, [2])  # (B,N,num_classes)
        return f_out