Exemplo n.º 1
0
for subject_id, name in enumerate(list_ds):
    # Ignore the first row and column.
    # Columns: [index, p_x, p_y]

    # Read pupil data from the published dataset
    PupilData = np.genfromtxt(os.path.join(PATH_DIR, name + '.txt'),
                              delimiter=' ')[1:, 1:]

    listFiles = glob.glob(os.path.join(PATH_DIR, name, '*.png'))
    imNames = list(map(os.path.basename, listFiles))
    imNames = list(map(os.path.splitext, imNames))
    imNames, _ = list(zip(*imNames))
    imNames = np.array(list(map(int, imNames)))

    # Generate an empty data container
    Data, keydict = generateEmptyStorage(name='Fuhl', subset=name)

    ds_name = keydict['dataset'] + '_' + keydict['subset'] + '_' + str(ds_num)

    if not noDisp:
        fig, plts = plt.subplots(1, 1)
    for i in range(0, PupilData.shape[0]):
        iNum = PupilData[i, 0]

        # Assert unique image names
        loc = imNames == iNum
        assert sum(loc) == 1, "Error. Only one file should have that number"

        loc = np.where(loc)[0]
        path2im = listFiles[int(loc)]
        imStr = os.path.split(path2im)[1]
def process(args, ds_num, fName):
    warnings.filterwarnings("error")
    PATH_IMAGES = os.path.join(PATH_DIR, fName, 'synthetic')
    PATH_MASK_SKIN = os.path.join(PATH_DIR, fName, 'mask-withskin')
    PATH_MASK_NOSKIN = os.path.join(PATH_DIR, fName,
                                    'mask-withoutskin-noglasses')

    imList = glob.glob(os.path.join(PATH_IMAGES, '*.tif'))

    if not noDisp:
        fig, plts = plt.subplots(1, 1)

    Data, keydict = generateEmptyStorage(
        name='riteyes-{}'.format(args.which_riteyes_set),
        subset='riteyes-{}_{}'.format(args.which_riteyes_set, fName))
    ds_name = 'riteyes-{}_{}_{}'.format(args.which_riteyes_set, fName, ds_num)
    fr_num = 0

    for ele in imList:
        imName_withext = os.path.split(ele)[1]
        imName = os.path.splitext(ele)[0]

        path2im = os.path.join(PATH_IMAGES, imName_withext)
        path2mask = os.path.join(PATH_MASK_SKIN, imName_withext)
        path2mask_woskin = os.path.join(PATH_MASK_NOSKIN, imName_withext)
        try:
            I = np.asarray(Image.open(path2im).convert('L'))
            maskIm = np.asarray(Image.open(path2mask).convert('RGB'))
            maskIm_woskin = np.asarray(
                Image.open(path2mask_woskin).convert('RGB'))

            I = cv2.resize(I, (640, 480), interpolation=cv2.INTER_CUBIC)
            maskIm = cv2.resize(maskIm, (640, 480),
                                interpolation=cv2.INTER_NEAREST)
            maskIm_woskin = cv2.resize(maskIm_woskin, (640, 480),
                                       interpolation=cv2.INTER_NEAREST)

            maskIm, maskIm_woskin = quantizeMask(maskIm, maskIm_woskin)
        except:
            print('Corrupt data found in {}.'.format(ele))
            import pdb
            pdb.set_trace()

        pupilPts, irisPts = getValidPoints(maskIm_woskin)

        # Pupil ellipse fit
        model_pupil = ransac(pupilPts, ElliFit, 15, 40, 5e-3, 15).loop()
        pupil_fit_error = my_ellipse(model_pupil.model).verify(pupilPts)

        r, c = np.where(maskIm_woskin == 2)
        pupil_loc = model_pupil.model[:
                                      2] if pupil_fit_error < 0.05 else np.stack(
                                          [np.mean(c), np.mean(r)], axis=0)

        # Iris ellipse fit
        model_iris = ransac(irisPts, ElliFit, 15, 40, 5e-3, 15).loop()
        iris_fit_error = my_ellipse(model_iris.model).verify(irisPts)

        if (pupil_fit_error > 0.05) | (iris_fit_error > 0.05):
            print('Skipping: {}'.format(imName))
            continue

        Data['Info'].append(imName)
        Data['Masks'].append(maskIm)
        Data['Images'].append(I)
        Data['pupil_loc'].append(pupil_loc)
        Data['subject_id'].append(str(fName))
        Data['Masks_noSkin'].append(maskIm_woskin)

        keydict['archive'].append(ds_name)
        keydict['pupil_loc'].append(pupil_loc)
        keydict['resolution'].append(I.shape)
        keydict['subject_id'].append(str(fName))

        Data['Fits']['pupil'].append(model_pupil.model)
        Data['Fits']['iris'].append(model_iris.model)

        keydict['Fits']['pupil'].append(model_pupil.model)
        keydict['Fits']['iris'].append(model_iris.model)

        fr_num += 1
        if not noDisp:
            if fr_num == 1:
                cE = Ellipse(tuple(pupil_loc),
                             2 * model_pupil.model[2],
                             2 * model_pupil.model[3],
                             angle=np.rad2deg(model_pupil.model[-1]))
                cL = Ellipse(tuple(model_iris.model[0:2]),
                             2 * model_iris.model[2], 2 * model_iris.model[3],
                             np.rad2deg(model_iris.model[4]))
                cE.set_facecolor('None')
                cE.set_edgecolor((1.0, 0.0, 0.0))
                cL.set_facecolor('None')
                cL.set_edgecolor((0.0, 1.0, 0.0))
                cI = plts.imshow(I)
                cM = plts.imshow(maskIm, alpha=0.5)
                cX = plts.scatter(pupil_loc[0], pupil_loc[1])
                plts.add_patch(cE)
                plts.add_patch(cL)
                plt.show()
                plt.pause(.01)
            else:
                cE.center = tuple(pupil_loc)
                cE.angle = np.rad2deg(model_pupil.model[-1])
                cE.width = 2 * model_pupil.model[2]
                cE.height = 2 * model_pupil.model[3]
                cL.center = tuple(model_iris.model[0:2])
                cL.width = 2 * model_iris.model[2]
                cL.height = 2 * model_iris.model[3]
                cL.angle = np.rad2deg(model_iris.model[-1])
                newLoc = np.array([pupil_loc[0], pupil_loc[1]])
                cI.set_data(I)
                cM.set_data(maskIm)
                cX.set_offsets(newLoc)
                mypause(0.01)

    keydict['resolution'] = np.stack(keydict['resolution'], axis=0)
    keydict['subject_id'] = np.stack(keydict['subject_id'], axis=0)
    keydict['archive'] = np.stack(keydict['archive'], axis=0)
    keydict['pupil_loc'] = np.stack(keydict['pupil_loc'], axis=0)
    keydict['Fits']['pupil'] = np.stack(keydict['Fits']['pupil'], axis=0)
    keydict['Fits']['iris'] = np.stack(keydict['Fits']['iris'], axis=0)

    Data['subject_id'] = np.stack(Data['subject_id'], axis=0)
    Data['pupil_loc'] = np.stack(Data['pupil_loc'], axis=0)
    Data['Images'] = np.stack(Data['Images'], axis=0)
    Data['Masks'] = np.stack(Data['Masks'], axis=0)
    Data['Masks_noSkin'] = np.stack(Data['Masks_noSkin'], axis=0)
    Data['Fits']['pupil'] = np.stack(Data['Fits']['pupil'], axis=0)
    Data['Fits']['iris'] = np.stack(Data['Fits']['iris'], axis=0)

    warnings.filterwarnings("ignore")

    # Save data
    dd.io.save(os.path.join(PATH_DS, str(ds_name) + '.h5'), Data)
    scio.savemat(os.path.join(PATH_MASTER,
                              str(ds_name) + '.mat'),
                 keydict,
                 appendmat=True)
    ds_num = ds_num + 1
Exemplo n.º 3
0
for name in list_ds:
    # Ignore the first row and column.
    # Columns: [index, p_x, p_y]
    opts = os.listdir(os.path.join(PATH_DIR, name))

    for subdir in opts:
        PATH_DATA = os.path.join(PATH_DIR, name, subdir)

        # Read pupil data
        Path2text = os.path.join(PATH_DATA, 'journal-{:04d}.txt'.format(int(subdir)-1))
        Path2vid = os.path.join(PATH_DATA, 'eye-{:04d}-0000.avi'.format(int(subdir)-1))
        PupilData = np.array(readFormattedText(Path2text, 2))
        VidObj = cv2.VideoCapture(Path2vid)

        # Create an empty dictionary as per agreed structure
        Data, keydict = generateEmptyStorage(name='Santini', subset='Santini_{}'.format(name))

        ds_name = keydict['dataset'] + '_' + keydict['subset'] + '_' + str(ds_num)

        if not noDisp:
            fig, plts = plt.subplots(1,1)

        fr_num = 0
        while(VidObj.isOpened()):
            ret, I = VidObj.read()

            if ret == True:
                I = cv2.cvtColor(I, cv2.COLOR_BGR2GRAY)
                I = cv2.resize(I, (640, 480), cv2.INTER_LANCZOS4)

                Data['Images'].append(I)
    ds_name = 'NVGaze' + '_' + fName + '_' + str(ds_num)

    # Parse subject ID from the name
    subject_id = fName.split('_')[2]

    # Ignore the first row and column.
    # Columns: [index, p_x, p_y]
    ZipObj = zipfile.ZipFile(
        os.path.join(PATH_DIR, fName, 'footage_image_data.zip'))
    imList = [ele for ele in ZipObj.namelist() if 'type_img_frame' in ele]
    shuffle(imList)

    if not noDisp:
        fig, plts = plt.subplots(1, 1)

    Data, keydict = generateEmptyStorage(name='NVGaze', subset=fName)

    fr_num = 0

    for boo in imList[:500]:
        # Read pupil  info
        imNum_str = re.findall('\d+', boo)[0]
        str_imName = 'type_img_frame_{}.png'.format(imNum_str)
        str_imName_Mask = 'type_maskWithSkin_frame_{}.png'.format(imNum_str)
        str_imName_Mask_woSkin = 'type_maskWithoutSkin_frame_{}.png'.format(
            imNum_str)

        I = ZipObj.read(str_imName)
        I = np.array(Image.open(io.BytesIO(I))).astype(np.double)
        I = preProcessNV(I, np.uint8, 0.5)
listDir.remove('test')
for dirCond in listDir:
    ds_name = 'OpenEDS_{}_{}'.format(dirCond, ds_num)

    print('Opening the {} folder'.format(dirCond))

    # Read UID
    path2json = os.path.join(PATH_OPENEDS, 'OpenEDS_{}_userID_mapping_to_images.json'.format(dirCond))
    im2UID = json.load(open(path2json, 'r'))

    PATH_IMAGES = os.path.join(PATH_DIR, dirCond, 'images')
    PATH_LABELS = os.path.join(PATH_DIR, dirCond, 'labels')
    PATH_FITS = os.path.join(PATH_DIR, dirCond, 'fits')
    listIm = os.listdir(PATH_IMAGES)

    Data, keydict = generateEmptyStorage(name='OpenEDS', subset=dirCond)

    i = 0
    if not noDisp:
        fig, plts = plt.subplots(1,1)

    for pData in im2UID:
        # Image number and UID for each person
        listIm = pData['semantic_segmenation_images']
        pid = str(int(pData['id'].replace('U', '')) - 111)

        for imName_full in listIm:
            imName, _ = os.path.splitext(imName_full)

            # Do not save images without a proper ellipse and iris fit
            # Load image, label map and fits
    # Ignore the first row and column.
    # Columns: [index, p_x, p_y]
    opts = glob.glob(os.path.join(PATH_DIR, name, '*.avi'))

    for Path2vid in opts:
        # Read pupil  info
        loc, fName = os.path.split(Path2vid)
        fName = os.path.splitext(fName)[0]
        Path2text = os.path.join(loc, fName + '.txt')
        PupilData = np.array(readFormattedText(Path2text, 0))
        VidObj = cv2.VideoCapture(Path2vid)

        ds_name = ds_name = 'LPW_{}_{}_{}'.format(name, fName, ds_num)

        # Generate empty dictionaries
        Data, keydict = generateEmptyStorage(name='LPW',
                                             subset='LPW_{}'.format(name))
        if not noDisp:
            fig, plts = plt.subplots(1, 1)
        fr_num = 0
        while (VidObj.isOpened()):
            ret, I = VidObj.read()
            if ret == True:
                I = cv2.cvtColor(I, cv2.COLOR_BGR2GRAY)

                pupil_loc = PupilData[fr_num, :]

                Data['Info'].append(str(fr_num))
                Data['Images'].append(I)
                Data['pupil_loc'].append(pupil_loc)
                Data['subject_id'].append(str(subject_id))
Exemplo n.º 7
0
N = 2000
opSize = (640, 480)
sc = 3  # Modify this to control how much to extract
# x_sc = int(sc*opSize[0])
# y_sc = int(sc*opSize[1])
# x_crop = int(0.5*x_sc)
# y_crop = int(0.5*y_sc)

for i in range(0, 10):
    ds_name = 'UnityEyes_' + str(i) + '_' + str(ds_num)
    Image_counter = 0.0

    if not args.noDisp:
        fig, plts = plt.subplots(1, 1)

    Data, keydict = generateEmptyStorage(name='UnityEyes',
                                         subset='UnityEyes_{}'.format(i))

    for fName in list_ds[i * N:(i + 1) * N]:
        path2im = os.path.split(fName)[0]
        imNum = os.path.splitext(os.path.split(fName)[1])[0]
        Info = json.load(open(os.path.join(path2im, imNum + '.json'), 'r'))

        subject_id = Info['eye_region_details']['primary_skin_texture']

        # Read image
        I = cv2.imread(fName, 0)[:, 480:-480, ...]

        # Read sclera points
        pts_sclera = [
            np.asarray(literal_eval(ele)) for ele in Info['interior_margin_2d']
        ]
for fName in list_ds:
    warnings.filterwarnings("error")
    ds_name = 'Swirski'+'_'+fName+'_'+str(ds_num)

    # Parse subject ID from the name
    subject_id = str(fName.split('-')[0])

    # Ignore the first row and column.
    # Columns: [index, p_x, p_y]
    imList = os.listdir(os.path.join(PATH_DIR, fName, 'frames'))
    imList.sort()

    if not noDisp:
        fig, plts = plt.subplots(1,1)

    Data, keydict = generateEmptyStorage(name='Swirski', subset='Swirski_'+fName)

    # Read annotations
    info = pd.read_csv(os.path.join(PATH_DIR, fName, 'pupil-ellipses.txt'), delimiter=' ')
    ellipses = info.iloc[:, 2:].to_numpy()
    frame_no = info.iloc[:, 0].to_numpy()

    fr_num = 0

    for idx, entry in np.ndenumerate(frame_no):

        path_im = os.path.join(PATH_DIR, fName, 'frames', '{}-eye.png'.format(entry))
        I = cv2.imread(path_im, 0)

        # Pad 10 replicated pixels to bring to 640x480
        I = np.pad(I, ((10, 10), (10, 10)), mode='edge')