def normalisation_over_curves(self):
        preprocess = PreprocessData()
        preprocess.enable_normalisation_scaler = True
        preprocess.enable_ignore_price = True
        preprocess.feature_range = [0, 1]
        sets_training, sets_test, sets_training_scaled, sets_test_scaled, training_dataset_names, test_dataset_names, maturities = preprocess.get_data(
        )

        self.plotting.plot_some_curves(
            "normalisation_over_curves",
            sets_test[0],
            sets_test_scaled[0], [25, 50, 75, 815],
            maturities,
            plot_separate=True)  # old: [25, 50, 75, 100, 600, 720, 740, 815]
    def helper(self, preprocess_type):
        preprocess = PreprocessData()
        if preprocess_type is None or preprocess_type is PreprocessType.NORMALISATION_OVER_TENORS:
            preprocess.enable_normalisation_scaler = True
            preprocess.feature_range = [0, 1]
        elif preprocess_type is PreprocessType.NORMALISATION_OVER_CURVES:
            preprocess.enable_normalisation_scaler = True
            preprocess.feature_range = [0, 1]
            preprocess.enable_ignore_price = True
        elif preprocess_type is PreprocessType.STANDARDISATION_OVER_TENORS:
            preprocess.enable_standardisation_scaler = True
        elif preprocess_type is PreprocessType.LOG_RETURNS_OVER_TENORS:
            preprocess.enable_log_returns = True

        sets_training, sets_test, sets_training_scaled, sets_test_scaled, training_dataset_names, test_dataset_names, maturities = preprocess.get_data(
        )
        rescaled_first_test_set = preprocess.rescale_data(
            sets_test_scaled[0], test_dataset_names[0])

        # check that assert_allclose is working:
        # rand = np.random.random_sample(sets_test[0].shape)
        # np.testing.assert_allclose(rescaled_first_test_set, rand)

        np.testing.assert_allclose(rescaled_first_test_set, sets_test[0])
    def all_normalised_data(self):
        preprocess_data = PreprocessData()

        preprocess_data.enable_normalisation_scaler = True
        sets_training, sets_test, sets_training_scaled, sets_test_scaled, training_dataset_names, test_dataset_names, maturities = preprocess_data.get_data(
        )

        for i, set_training_scaled in enumerate(sets_training_scaled):
            self.plotting.plot_2d(set_training_scaled,
                                  "/time_series/" + training_dataset_names[i],
                                  timeseries=True,
                                  save=True,
                                  title=True)

        for i, set_test_scaled in enumerate(sets_test_scaled):
            self.plotting.plot_2d(set_test_scaled,
                                  "/time_series/" + test_dataset_names[i],
                                  timeseries=True,
                                  save=True,
                                  title=True)
def simulate(plot=True):
    plotting = Plotting()
    preprocess = PreprocessData()
    preprocess.enable_normalisation_scaler = True
    preprocess.feature_range = [0, 1]

    # 1. get data and apply normalisation
    sets_training, sets_test, sets_training_scaled, sets_test_scaled, training_dataset_names, test_dataset_names, maturities = preprocess.get_data(
    )

    print("sets_training_scaled.shape", sets_training_scaled[0].shape)

    # plotting.plot_2d(sets_training_scaled[0][:, 0], "sets_training_scaled[0][:, 0]", save=False)
    # plotting.plot_2d(sets_test_scaled[0][:, 0], "test_feature_normalised_short_end", save=True)

    ae_params = {
        'input_dim': sets_training_scaled[0].shape[1],  # 56
        'latent_dim': 2,
        'hidden_layers': (
            56,
            40,
            28,
            12,
            4,
        ),
        'leaky_relu': 0.1,
        'loss': 'mse',
        'last_activation': 'linear',
        'batch_size': 20,
        'epochs': 100,
        'steps_per_epoch': 500
    }
    ae_params_hash = hashlib.md5(
        json.dumps(ae_params, sort_keys=True).encode('utf-8')).hexdigest()

    autoencoder = Autoencoder(ae_params)
    autoencoder.train(sets_training_scaled, sets_test_scaled)
    autoencoder.save_model("ae_" + ae_params_hash)
    # autoencoder.load_model("ae_" + ae_params_hash)

    # 2: encode data using autoencoder
    sets_encoded_training = []
    for set_training_scaled in sets_training_scaled:
        sets_encoded_training.append(autoencoder.encode(set_training_scaled))

    sets_encoded_test = []
    for set_test_scaled in sets_test_scaled:
        sets_encoded_test.append(autoencoder.encode(set_test_scaled))

    # 6: decode using autoencoder
    decoded_test = autoencoder.decode(sets_encoded_test[0])

    # 7: undo minimax, for now only the first simulation
    # decoded_generated_segments_first_sim = decoded_generated_segments[0]
    simulated = preprocess.rescale_data(decoded_test,
                                        dataset_name=test_dataset_names[0])

    # reconstruction error
    # reconstruction_error(sets_test_scaled[0], decoded_test)
    error = reconstruction_error(np.array(sets_test[0]), simulated)

    if plot:
        plotting.plot_2d(sets_encoded_test[0],
                         "test_feature_normalised_encoded_autoencoder_on_",
                         save=True)

        plotting.plot_some_curves("normalised_compare_ae_before_rescale",
                                  sets_test_scaled[0], decoded_test,
                                  [25, 50, 75, 815], maturities)

        plotting.plot_some_curves("normalised_compare_ae", sets_test[0],
                                  simulated, [25, 50, 75, 815], maturities)

        plotting.plot_some_curves("normalised_compare_ae",
                                  sets_test[0],
                                  sets_test_scaled[0],
                                  [25, 50, 75, 815, 100, 600, 720, 740],
                                  maturities,
                                  plot_separate=True)

    return error
def simulate():
    plotting = Plotting()
    preprocess_normalisation = PreprocessData()
    preprocess_normalisation.enable_normalisation_scaler = True
    preprocess_normalisation.feature_range = [-1, 1]
    # preprocess_normalisation.enable_ignore_price = True

    # 1. get data and apply normalisation
    sets_training, sets_test, sets_training_scaled, sets_test_scaled, training_dataset_names, test_dataset_names, maturities = preprocess_normalisation.get_data(
    )
    all_training_scaled = np.vstack(sets_training_scaled)

    ae_params = {
        'input_dim': sets_training_scaled[0].shape[1],  # 56
        'latent_dim': 3,
        'hidden_layers': (
            56,
            40,
            28,
            12,
            4,
        ),
        'leaky_relu': 0.1,
        'last_activation': 'linear',  # sigmoid or linear
        'loss':
        'mean_square_error',  # binary_crossentropy or mean_square_error
        'epsilon_std': 1.0,
        'batch_size': 20,
        'epochs': 100,
        'steps_per_epoch': 500
    }
    ae_params_hash = hashlib.md5(
        json.dumps(ae_params, sort_keys=True).encode('utf-8')).hexdigest()

    # 2. train/load variational autoencoder
    vae = VariationalAutoencoder(ae_params)

    vae.train(all_training_scaled, sets_test_scaled)
    vae.save_model("vae_" + ae_params_hash)
    # vae.load_model("vae_" + ae_params_hash)

    # 3: encode data using autoencoder
    sets_encoded_training = []
    for set_training_scaled in sets_training_scaled:
        sets_encoded_training.append(vae.encode(set_training_scaled))

    sets_encoded_test = []
    for set_test_scaled in sets_test_scaled:
        sets_encoded_test.append(vae.encode(set_test_scaled))

    # 4: decode using vae
    decoded_data = vae.decode(sets_encoded_test[0])

    # 7: undo minimax, for now only the first simulation
    simulated = preprocess_normalisation.rescale_data(
        decoded_data, dataset_name=test_dataset_names[0])

    # reconstruction error
    # reconstruction_error(sets_test_scaled[0], decoded_data)
    reconstruction_error(np.array(sets_test[0]), simulated)

    # plot latent space
    plotting.plot_2d(sets_encoded_test[0],
                     "test_feature_normalised_encoded_vae_on_",
                     save=True)
    plotting.plot_space(maturities,
                        vae,
                        "variational_grid",
                        latent_dim=sets_encoded_test[0].shape[1])

    # plot scaled results
    plotting.plot_some_curves("test_feature_normalised_compare_vae_scaled",
                              sets_test_scaled[0], decoded_data,
                              [25, 50, 75, 815], maturities)

    plotting.plot_some_curves("test_feature_normalised_compare_vae",
                              sets_test[0], simulated, [25, 50, 75, 815],
                              maturities)
Exemplo n.º 6
0
def simulate(plot=True):
    plotting = Plotting()
    preprocess = PreprocessData()
    preprocess.enable_normalisation_scaler = True
    preprocess.feature_range = [0, 1]

    window_size = 20

    # 1. get data and apply normalisation
    sets_training, sets_test, sets_training_scaled, sets_test_scaled, training_dataset_names, test_dataset_names, maturities = preprocess.get_data(
        chunks_of=window_size)

    print("sets_training_scaled.shape", sets_training_scaled[0].shape)

    # plotting.plot_2d(sets_training_scaled[0][:, 0], "sets_training_scaled[0][:, 0]", save=False)
    # plotting.plot_2d(sets_test_scaled[0][:, 0], "test_feature_normalised_short_end", save=True)

    ae_params = {
        'input_dim': (
            window_size,
            sets_training_scaled[0].shape[1],
        ),  # 10 x 56
        'latent_dim': (
            2,
            56,
        ),
        'hidden_layers': (
            12 * 56,
            4 * 56,
        ),
        'leaky_relu': 0.1,
        'loss': 'mse',
        'last_activation': 'linear',
        'batch_size': 20,
        'epochs': 100,
        'steps_per_epoch': 500,
    }
    ae_params_hash = hashlib.md5(
        json.dumps(ae_params, sort_keys=True).encode('utf-8')).hexdigest()

    autoencoder = AutoencoderWindows(ae_params)

    print("sets_training_scaled", sets_training_scaled[0].shape)

    autoencoder.train(sets_training_scaled, sets_test_scaled)
    autoencoder.save_model("ae_" + ae_params_hash)
    # autoencoder.load_model("ae_" + ae_params_hash)

    # 2: encode data using autoencoder
    sets_encoded_training = []
    for set_training_scaled in sets_training_scaled:
        sets_encoded_training.append(autoencoder.encode(set_training_scaled))

    sets_encoded_test = []
    for set_test_scaled in sets_test_scaled:
        sets_encoded_test.append(autoencoder.encode(set_test_scaled))

    print("sets_encoded_training", len(sets_encoded_training),
          sets_encoded_training[0].shape)
    print("sets_encoded_test", sets_encoded_test[0].shape)

    # 6: decode using autoencoder
    decoded_test = autoencoder.decode(sets_encoded_test[0])

    print("decoded_test", decoded_test.shape)

    # 7: undo minimax, for now only the first simulation
    # decoded_generated_segments_first_sim = decoded_generated_segments[0]
    preprocess.enable_curve_smoothing = True
    simulated_smooth = preprocess.rescale_data(
        decoded_test, dataset_name=test_dataset_names[0])

    # reconstruction error
    # reconstruction_error(sets_test_scaled[0], decoded_test)
    # error = reconstruction_error(np.array(sets_test[0]), simulated_smooth)
    # print("error:", error)

    smape_result_smooth = smape(simulated_smooth,
                                np.array(sets_test[0]),
                                over_curves=True)

    print(np.mean(smape_result_smooth), np.var(smape_result_smooth))

    if plot:
        # plotting.plot_2d(sets_encoded_test[0], "test_feature_normalised_encoded_autoencoder_on_", save=True)

        # plotting.plot_some_curves("normalised_compare_ae_before_rescale", sets_test_scaled[0], decoded_test,
        #                           [25, 50, 75, 815], maturities)

        plotting.plot_some_curves("normalised_compare_ae", sets_test[0],
                                  simulated_smooth, [25, 50, 75, 815],
                                  maturities)
Exemplo n.º 7
0
def simulate():
    plotting = Plotting()
    preprocess_normalisation = PreprocessData()
    preprocess_normalisation.enable_normalisation_scaler = True
    preprocess_normalisation.feature_range = [0, 1]
    # preprocess_normalisation.enable_scaler = True

    # 1. get data and apply normalisation
    sets_training, sets_test, sets_training_scaled, sets_test_scaled, training_dataset_names, test_dataset_names, maturities = preprocess_normalisation.get_data(
    )

    # plotting.plot_2d(sets_training_scaled[0][:, 0], "sets_training_scaled[0][:, 0]", save=False)
    # plotting.plot_2d(sets_test_scaled[0][:, 0], "test_feature_normalised_short_end", save=True)

    all_stacked = np.vstack((np.vstack(sets_training), np.vstack(sets_test)))
    all_stacked_scaled = np.vstack(
        (np.vstack(sets_training_scaled), np.vstack(sets_test_scaled)))
    all_training_scaled = np.vstack(sets_training_scaled)

    # print("all_stacked_scaled.shape", all_stacked_scaled.shape)
    # plotting.plot_2d(all_stacked[:, 0], "training and test data", save=False)
    # plotting.plot_2d(all_stacked_scaled[:, 0], "training and test data scaled", save=False)

    ae_params = {
        'input_dim': sets_training_scaled[0].shape[1],  # 56
        'latent_dim': 2,
        'hidden_layers': (56, 40, 28, 12, 4, 2),
        'leaky_relu': 0.1,
        'loss': 'mse',
        'last_activation': 'linear',
        'batch_size': 20,
        'epochs': 100,
        'steps_per_epoch': 500
    }
    ae_params_hash = hashlib.md5(
        json.dumps(ae_params, sort_keys=True).encode('utf-8')).hexdigest()

    autoencoder = Autoencoder(ae_params)
    # autoencoder.train(all_stacked_scaled, sets_test_scaled)
    # autoencoder.train(sets_test_scaled[0], sets_test_scaled)
    # autoencoder.train(all_training_scaled, sets_test_scaled)
    # autoencoder.save_model("ae_" + ae_params_hash)
    autoencoder.load_model("ae_" + ae_params_hash)

    # 2: encode data using autoencoder
    sets_encoded_training = []
    for set_training_scaled in sets_training_scaled:
        sets_encoded_training.append(autoencoder.encode(set_training_scaled))

    sets_encoded_test = []
    for set_test_scaled in sets_test_scaled:
        sets_encoded_test.append(autoencoder.encode(set_test_scaled))

    plotting.plot_2d(sets_encoded_test[0],
                     "test_feature_normalised_encoded_autoencoder_on_",
                     save=True)

    # 6: decode using autoencoder
    decoded_test = autoencoder.decode(sets_encoded_test[0])

    # 7: undo minimax, for now only the first simulation
    simulated = preprocess_normalisation.rescale_data(
        decoded_test, dataset_name=test_dataset_names[0])

    plotting.plot_some_curves(
        "test_feature_normalised_compare_autoencoder_before_rescale",
        sets_test_scaled[0], decoded_test, [25, 50, 75, 815],
        maturities)  # old: [25, 50, 75, 100, 600, 720, 740, 815]

    plotting.plot_some_curves(
        "test_feature_normalised_compare_autoencoder", sets_test[0], simulated,
        [25, 50, 75, 815],
        maturities)  # old: [25, 50, 75, 100, 600, 720, 740, 815]

    # curve_smooth = []
    # for curve in simulated:
    #     print("curve.shape", curve.shape)
    #     curve_smooth.append(savgol_filter(curve, 23, 5))  # window size 51, polynomial order 3
    # curve_smooth = np.array(curve_smooth)

    print("reconstruction error BEFORE smoothing:")
    reconstruction_error(np.array(sets_test[0]), simulated)

    preprocess_normalisation.enable_curve_smoothing = True
    simulated = preprocess_normalisation.rescale_data(
        decoded_test, dataset_name=test_dataset_names[0])

    plotting.plot_some_curves(
        "test_feature_normalised_compare_autoencoder", sets_test[0], simulated,
        [25, 50, 75, 815],
        maturities)  # old: [25, 50, 75, 100, 600, 720, 740, 815]

    # plotting.plot_some_curves("test_feature_normalised_compare_normalisation", sets_test[0], sets_test_scaled[0],
    #                           [25, 50, 75, 815, 100, 600, 720, 740], maturities, plot_separate=True)

    # reconstruction error
    # reconstruction_error(sets_test_scaled[0], decoded_test)
    print("reconstruction error AFTER smoothing:")
    reconstruction_error(np.array(sets_test[0]), simulated)
Exemplo n.º 8
0
def simulate():
    plotting = Plotting()
    preprocess_normalisation = PreprocessData()
    preprocess_logreturns = PreprocessData()
    preprocess_normalisation.enable_normalisation_scaler = True
    preprocess_logreturns.enable_log_returns = True

    # 1. get data and apply pre-processing
    sets_training, sets_test, sets_training_scaled, sets_test_scaled, training_dataset_names, test_dataset_names, maturities = preprocess_normalisation.get_data()

    ae_params = { 'preprocess_type': PreprocessType.NORMALISATION_OVER_TENORS.value,
                  'input_dim': (10, sets_training_scaled[0].shape[1],), # 56
                  'latent_dim': 2*56,
                  'hidden_layers': (12*56, 4*56, ),
                  'leaky_relu': 0.1,
                  'loss': 'mse',
                  'last_activation': 'linear',
                  'batch_size': 5,
                  'epochs': 5,
                  'steps_per_epoch': 500}

    ae_params_hash = hashlib.md5(json.dumps(ae_params, sort_keys=True).encode('utf-8')).hexdigest()

    autoencoder = Autoencoder(ae_params)
    # autoencoder.train(np.vstack(sets_training_scaled), sets_test_scaled)
    # autoencoder.save_model("ae_" + ae_params_hash)
    autoencoder.load_else_train(sets_training_scaled, sets_test_scaled, "ae_" + ae_params_hash)

    # 2: encode data using autoencoder
    sets_encoded_training = autoencoder.encode(sets_training_scaled)
    sets_encoded_test = autoencoder.encode(sets_test_scaled)

    print("sets_encoded_test", sets_encoded_test[0].shape)
    plotting.plot_2d(sets_encoded_test[0], "encoded test data with deep autoencoder", save=False)

    # 3: log returns of encoded data
    sets_encoded_log_training = preprocess_logreturns.scale_data(sets_encoded_training)
    sets_encoded_log_test = preprocess_logreturns.scale_data(sets_encoded_test)

    plotting.plot_2d(sets_encoded_log_test[0], "encoded test data with deep autoencoder, then log returns", save=False)

    num_c = 6*7
    num_o = 6*7
    gan_params = {'ae_params_hash': ae_params_hash,
                  'num_tenors': sets_encoded_log_training[0].shape[1],
                  'num_c': num_c,
                  'num_z': 6*7,
                  'num_o': num_o,
                  'gen_model_type': 'standard', # conv
                  'dis_model_type': 'standard', # conv
                  'gen_layers': (4*(6*7*2),), # 4 * num_o * num_tenors
                  'dis_layers': (4*(6*7),), # 4 * num_o
                  'gen_last_activation': 'tanh',
                  'dis_last_activation': 'sigmoid',
                  'loss': 'binary_crossentropy',
                  'batch_size': 128,
                  'epochs': 20000}
    gan_params_hash = hashlib.md5(json.dumps(gan_params, sort_keys=True).encode('utf-8')).hexdigest()

    gan = GAN(gan_params)  # try training on larger input and output
    # gan.train(sets_encoded_log_training, sample_interval=200)
    # gan.save_model("gan_" + gan_params_hash)
    gan.load_model("gan_" + gan_params_hash)

    # COV TEST, TEMPORARY
    # for name, set in zip(training_dataset_names, sets_training):
    #     print("name:", name)
    #     set_cov_log_returns_over_features = cov_log_returns_over_features(set)
    #     plotting.plot_3d_cov("covariance_time_series_" + name, set_cov_log_returns_over_features, show_title=False)
    #     plotting.plot_3d("time_series_" + name, set, maturities)
    # END COV TEST.

    # 4: simulate on encoded log returns, conditioned on test dataset
    num_simulations = 10
    num_repeats = 0
    generated, _ = gan.generate(condition=sets_encoded_log_test[-1], condition_on_end=False, num_simulations=num_simulations, repeat=num_repeats)

    # insert the last real futures curve in order to do rescaling
    print("sets_encoded_log_test[-1][num_c] shape", sets_encoded_log_test[-1].iloc[num_c].shape)
    print("generated_segments.shape", generated.shape)
    generated = np.insert(generated, 0, sets_encoded_log_test[-1].iloc[num_c], axis=0)

    # 5: undo log-returns # todo: this start_value is actually one off! Error still persists... autoencoder causing the difference?
    encoded_generated = preprocess_logreturns.rescale_data(generated, start_value=sets_encoded_test[-1][num_c])
    encoded_generated = encoded_generated[:, 1:] # remove first curve again
    # 6: decode using autoencoder
    decoded_generated_segments = autoencoder.decode(encoded_generated)

    # 7: undo minimax, for now only the first simulation
    simulated = preprocess_normalisation.rescale_data(decoded_generated_segments, dataset_name=test_dataset_names[-1])

    preprocess_normalisation.enable_curve_smoothing = True
    simulated_smooth = preprocess_normalisation.rescale_data(decoded_generated_segments, dataset_name=test_dataset_names[-1])

    real = np.array(sets_test[-1])[num_c:num_c + num_o]

    print("simulated, real", simulated.shape, real.shape)

    smape_result = smape(simulated, real)
    smape_result_smooth = smape(simulated_smooth, real)
    print("smape_result and smooth", smape_result, smape_result_smooth)
    print("smape_resul_smooth", smape_result_smooth)
def main():
    plotting = Plotting()
    preprocess_normalisation = PreprocessData()
    preprocess_normalisation.enable_normalisation_scaler = True
    # preprocess_normalisation.enable_standardisation_scaler = True

    sets_training, sets_test, sets_training_scaled, sets_test_scaled, training_dataset_names, test_dataset_names, maturities = preprocess_normalisation.get_data(
    )

    # sklearn model (check that it is doing the same (it is))
    # pca_model_sklearn = PCA(n_components=2)
    # pca_model_sklearn.fit(sets_test_scaled[0])
    # test_data_scaled_encoded = pca_model_sklearn.transform(sets_test_scaled[0])
    # test_data_scaled_decoded = pca_model_sklearn.inverse_transform(test_data_scaled_encoded)

    # our own model
    def pca_on_normalised():

        params = {'latent_dim': 2}
        pca_model = PCAModel(params)
        pca_model.train(np.vstack(sets_training_scaled))

        test_data_scaled_encoded = pca_model.encode(sets_test_scaled[0])
        test_data_scaled_decoded = pca_model.decode(test_data_scaled_encoded)

        print("sets_test_scaled[0].shape", sets_test_scaled[0].shape)
        print("test_data_scaled_encoded.shape", test_data_scaled_encoded.shape)
        print("test_data_scaled_decoded.shape", test_data_scaled_decoded.shape)

        # plot results
        plotting.plot_2d(test_data_scaled_encoded, "wti_nymex_encoded_pca")
        simulated = preprocess_normalisation.rescale_data(
            test_data_scaled_decoded, dataset_name=test_dataset_names[0])
        plotting.plot_some_curves("wti_nymex_normalised_compare_pca",
                                  sets_test[0], simulated, [25, 50, 75, 815],
                                  maturities)

        # plotting.plot_some_curves("test_feature_normalised_compare_normalisation", sets_test[0], sets_test_scaled[0],
        #                           [25, 50, 75, 815, 100, 600, 720, 740], maturities, plot_separate=True)

        # print("reconstruction_error", reconstruction_error(sets_test_scaled[0], test_data_scaled_decoded))
        # print("reconstruction_error", reconstruction_error(np.array(sets_test[0]), simulated))

        print("smape", smape(np.array(sets_test[0]), simulated))
        # print("smape", np.mean(smape(np.array(sets_test[0]), simulated, over_curves=True)))

    def pca_on_unnormalised():
        pca_model = PCAModel(k=2)
        pca_model.train(np.vstack(sets_training))
        test_data_encoded = pca_model.encode(np.array(sets_test[0]))
        test_data_decoded = pca_model.decode(test_data_encoded)

        # plot results
        plotting.plot_2d(test_data_encoded.T, "wti_nymex_pca")
        # simulated = preprocess_normalisation.rescale_data(test_data_decoded, dataset_name=test_dataset_names[0])
        plotting.plot_some_curves("wti_nymex_compare_pca", sets_test[0],
                                  test_data_decoded, [25, 50, 75, 815],
                                  maturities)

    # pca_on_unnormalised()
    pca_on_normalised()