def check_class_weights():
    folds = range(3)
    dir_files = '../data/emotionet/train_test_files_toy'
    for fold in folds:
        train_file = os.path.join(dir_files, 'train_' + str(fold) + '.txt')
        test_file = os.path.join(dir_files, 'test_' + str(fold) + '.txt')
        train_weights = util.get_class_weights_au(
            util.readLinesFromFile(train_file))
        test_weights = util.get_class_weights_au(
            util.readLinesFromFile(test_file))
        diff_weights = np.abs(train_weights - test_weights)
        print fold
        print np.min(diff_weights), np.max(diff_weights), np.mean(diff_weights)
Exemplo n.º 2
0
def train_with_vgg(lr,
                   route_iter,
                   train_file_pre,
                   test_file_pre,
                   out_dir_pre,
                   n_classes,
                   folds=[4, 9],
                   model_name='vgg_capsule_disfa',
                   epoch_stuff=[30, 60],
                   res=False,
                   reconstruct=False,
                   loss_weights=None,
                   exp=False,
                   dropout=0,
                   gpu_id=0,
                   aug_more='flip',
                   model_to_test=None,
                   save_after=10,
                   batch_size=32,
                   batch_size_val=32,
                   criterion='marginmulti'):

    # torch.setdefaulttensortype('torch.FloatTensor')

    num_epochs = epoch_stuff[1]

    if model_to_test is None:
        model_to_test = num_epochs - 1

    epoch_start = 0
    if exp:
        dec_after = ['exp', 0.96, epoch_stuff[0], 1e-6]
    else:
        dec_after = ['step', epoch_stuff[0], 0.1]

    lr = lr
    im_resize = 256
    im_size = 224
    model_file = None
    margin_params = None

    for split_num in folds:
        # post_pend = [split_num,'reconstruct',reconstruct]+aug_more+[num_epochs]+dec_after+lr+[dropout]
        # out_dir_train =  '_'.join([str(val) for val in [out_dir_pre]+post_pend]);
        out_dir_train = get_out_dir_train_name(out_dir_pre, lr, route_iter,
                                               split_num, epoch_stuff,
                                               reconstruct, exp, dropout,
                                               aug_more)

        print out_dir_train
        # raw_input()

        final_model_file = os.path.join(out_dir_train,
                                        'model_' + str(num_epochs - 1) + '.pt')
        if os.path.exists(final_model_file):
            print 'skipping', final_model_file
            # continue
        else:
            print 'not skipping', final_model_file

        train_file = train_file_pre + str(split_num) + '.txt'
        test_file = test_file_pre + str(split_num) + '.txt'

        class_weights = util.get_class_weights_au(
            util.readLinesFromFile(train_file))
        # class_weights = None

        mean_std = np.array([[93.5940, 104.7624, 129.1863], [1., 1.,
                                                             1.]])  #bgr
        std_div = np.array([0.225 * 255, 0.224 * 255, 0.229 * 255])
        bgr = True

        list_of_to_dos = aug_more
        print list_of_to_dos

        data_transforms = {}
        train_resize = None
        list_transforms = []
        if 'hs' in list_of_to_dos:
            print '**********HS!!!!!!!'
            list_transforms.append(
                lambda x: augmenters.random_crop(x, im_size))
            list_transforms.append(lambda x: augmenters.hide_and_seek(x))
            if 'flip' in list_of_to_dos:
                list_transforms.append(lambda x: augmenters.horizontal_flip(x))
            list_transforms.append(transforms.ToTensor())
        elif 'flip' in list_of_to_dos and len(list_of_to_dos) == 1:
            train_resize = im_size
            list_transforms.extend([
                lambda x: augmenters.horizontal_flip(x),
                transforms.ToTensor()
            ])
        elif 'none' in list_of_to_dos:
            train_resize = im_size
            list_transforms.append(transforms.ToTensor())

            # data_transforms['train']= transforms.Compose([
            #     # lambda x: augmenters.random_crop(x,im_size),
            #     transforms.ToTensor(),
            # ])
        else:
            # data_transforms['train']= transforms.Compose([
            list_transforms.append(
                lambda x: augmenters.random_crop(x, im_size))
            list_transforms.append(lambda x: augmenters.augment_image(
                x, list_of_to_dos, color=True, im_size=im_size))
            list_transforms.append(transforms.ToTensor())
            # lambda x: x*255.
            # ])

        list_transforms_val = [transforms.ToTensor()]

        if torch.version.cuda.startswith('9.1'):
            list_transforms.append(lambda x: x.float())
        else:
            list_transforms.append(lambda x: x * 255.)

        data_transforms['train'] = transforms.Compose(list_transforms)
        data_transforms['val'] = transforms.Compose(list_transforms_val)

        train_data = dataset.Bp4d_Dataset_with_mean_std_val(
            train_file,
            bgr=bgr,
            binarize=False,
            mean_std=mean_std,
            transform=data_transforms['train'],
            resize=train_resize)
        test_data = dataset.Bp4d_Dataset_with_mean_std_val(
            test_file,
            bgr=bgr,
            binarize=False,
            mean_std=mean_std,
            transform=data_transforms['val'],
            resize=im_size)

        network_params = dict(n_classes=n_classes,
                              pool_type='max',
                              r=route_iter,
                              init=False,
                              class_weights=class_weights,
                              reconstruct=reconstruct,
                              loss_weights=loss_weights,
                              std_div=std_div,
                              dropout=dropout)

        util.makedirs(out_dir_train)

        train_params = dict(out_dir_train=out_dir_train,
                            train_data=train_data,
                            test_data=test_data,
                            batch_size=batch_size,
                            batch_size_val=batch_size_val,
                            num_epochs=num_epochs,
                            save_after=save_after,
                            disp_after=1,
                            plot_after=100,
                            test_after=10,
                            lr=lr,
                            dec_after=dec_after,
                            model_name=model_name,
                            criterion=criterion,
                            gpu_id=gpu_id,
                            num_workers=0,
                            model_file=model_file,
                            epoch_start=epoch_start,
                            margin_params=margin_params,
                            network_params=network_params,
                            weight_decay=0)
        test_params = dict(out_dir_train=out_dir_train,
                           model_num=model_to_test,
                           train_data=train_data,
                           test_data=test_data,
                           gpu_id=gpu_id,
                           model_name=model_name,
                           batch_size_val=batch_size_val,
                           criterion=criterion,
                           margin_params=margin_params,
                           network_params=network_params,
                           post_pend='',
                           barebones=True)

        print train_params
        param_file = os.path.join(out_dir_train, 'params.txt')
        all_lines = []
        for k in train_params.keys():
            str_print = '%s: %s' % (k, train_params[k])
            print str_print
            all_lines.append(str_print)

        train_model_recon(**train_params)
        test_model_recon(**test_params)
Exemplo n.º 3
0
def train_vgg(wdecay,
              lr,
              folds=[4, 9],
              model_name='vgg_capsule_bp4d',
              epoch_stuff=[30, 60],
              res=False,
              class_weights=False,
              exp=False,
              align=False,
              disfa=False,
              more_aug=False,
              model_to_test=None,
              gpu_id=0,
              save_after=1):
    out_dirs = []

    out_dir_meta = '../experiments/' + model_name
    num_epochs = epoch_stuff[1]

    if model_to_test is None:
        model_to_test = num_epochs - 1

    epoch_start = 0
    if exp:
        dec_after = ['exp', 0.96, epoch_stuff[0], 1e-6]
    else:
        dec_after = ['step', epoch_stuff[0], 0.1]

    lr = lr

    im_resize = 256
    im_size = 224
    if not disfa:
        dir_files = '../data/bp4d'
        if align:
            type_data = 'train_test_files_256_color_align'
            n_classes = 12
        else:
            type_data = 'train_test_files_256_color_nodetect'
            n_classes = 12
        pre_pend = 'bp4d_256_' + type_data + '_'
        binarize = False
    else:
        dir_files = '../data/disfa'
        type_data = 'train_test_8_au_all_method_256_color_align'
        n_classes = 8
        pre_pend = 'disfa_' + type_data + '_'
        binarize = True
        pre_pend = 'disfa_256_' + type_data + '_'

    criterion_str = 'MultiLabelSoftMarginLoss'
    criterion = nn.MultiLabelSoftMarginLoss()
    # nn.MultiMarginLoss()
    # torch.nn.MultiLabelSoftMarginLoss(weight=None, size_average=None, reduce=None, reduction='elementwise_mean')

    init = False

    strs_append_list = [class_weights, criterion_str, num_epochs
                        ] + dec_after + lr + [more_aug]
    strs_append = '_' + '_'.join([str(val) for val in strs_append_list])

    for split_num in folds:

        out_dir_train = os.path.join(out_dir_meta,
                                     pre_pend + str(split_num) + strs_append)
        final_model_file = os.path.join(out_dir_train,
                                        'model_' + str(num_epochs - 1) + '.pt')
        # final_model_file = os.path.join(out_dir_train,'results_model_'+str(model_to_test))
        if os.path.exists(final_model_file):
            print 'skipping', final_model_file
            # continue
        else:
            print 'not skipping', final_model_file

        train_file = os.path.join(dir_files, type_data,
                                  'train_' + str(split_num) + '.txt')
        test_file = os.path.join(dir_files, type_data,
                                 'test_' + str(split_num) + '.txt')

        if 'imagenet' in model_name:
            bgr = False
            normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                             std=[0.229, 0.224, 0.225])
            std_div = None

            data_transforms = {}
            data_transforms['train'] = [
                transforms.ToPILImage(),
                transforms.RandomCrop(im_size),
                transforms.RandomHorizontalFlip(),
                transforms.RandomRotation(15),
                transforms.ColorJitter(),
                transforms.ToTensor(), normalize
            ]

            data_transforms['val'] = [
                transforms.ToPILImage(),
                transforms.Resize((im_size, im_size)),
                transforms.ToTensor(), normalize
            ]

            if torch.version.cuda.startswith('9'):
                data_transforms['train'].append(lambda x: x.float())
                data_transforms['val'].append(lambda x: x.float())

            data_transforms['train'] = transforms.Compose(
                data_transforms['train'])
            data_transforms['val'] = transforms.Compose(data_transforms['val'])

            train_data = dataset.Bp4d_Dataset(
                train_file,
                bgr=bgr,
                binarize=binarize,
                transform=data_transforms['train'])
            test_data = dataset.Bp4d_Dataset(test_file,
                                             bgr=bgr,
                                             binarize=binarize,
                                             transform=data_transforms['val'])
        else:
            bgr = True
            mean_std = np.array([[93.5940, 104.7624, 129.1863], [1., 1.,
                                                                 1.]])  #bgr

            normalize = transforms.Normalize(mean=mean_std[0, :],
                                             std=mean_std[1, :])

            data_transforms = {}
            data_transforms['train'] = [
                transforms.ToPILImage(),
                transforms.RandomCrop(im_size),
                transforms.RandomHorizontalFlip(),
                transforms.RandomRotation(15),
                transforms.ColorJitter(),
                transforms.ToTensor(), lambda x: x * 255, normalize
            ]

            data_transforms['val'] = [
                transforms.ToPILImage(),
                transforms.Resize((im_size, im_size)),
                transforms.ToTensor(), lambda x: x * 255, normalize
            ]

            if torch.version.cuda.startswith('9'):
                data_transforms['train'].append(lambda x: x.float())
                data_transforms['val'].append(lambda x: x.float())

            data_transforms['train'] = transforms.Compose(
                data_transforms['train'])
            data_transforms['val'] = transforms.Compose(data_transforms['val'])

            train_data = dataset.Bp4d_Dataset(
                train_file,
                bgr=bgr,
                binarize=binarize,
                transform=data_transforms['train'])
            test_data = dataset.Bp4d_Dataset(test_file,
                                             bgr=bgr,
                                             binarize=binarize,
                                             transform=data_transforms['val'])

        class_weights = util.get_class_weights_au(
            util.readLinesFromFile(train_file))
        criterion._buffers['weight'] = torch.Tensor(class_weights)

        network_params = dict(n_classes=n_classes, to_init=['last_fc'])

        batch_size = 32
        batch_size_val = 32

        util.makedirs(out_dir_train)

        train_params = dict(out_dir_train=out_dir_train,
                            train_data=train_data,
                            test_data=test_data,
                            batch_size=batch_size,
                            batch_size_val=batch_size_val,
                            num_epochs=num_epochs,
                            save_after=save_after,
                            disp_after=1,
                            plot_after=10,
                            test_after=1,
                            lr=lr,
                            dec_after=dec_after,
                            model_name=model_name,
                            criterion=criterion,
                            gpu_id=gpu_id,
                            num_workers=0,
                            epoch_start=epoch_start,
                            margin_params=None,
                            network_params=network_params,
                            weight_decay=wdecay)

        test_params = dict(out_dir_train=out_dir_train,
                           model_num=model_to_test,
                           train_data=train_data,
                           test_data=test_data,
                           gpu_id=gpu_id,
                           model_name=model_name,
                           batch_size_val=batch_size_val,
                           criterion=criterion,
                           margin_params=None,
                           network_params=network_params,
                           barebones=True)

        print train_params
        param_file = os.path.join(out_dir_train, 'params.txt')
        all_lines = []
        for k in train_params.keys():
            str_print = '%s: %s' % (k, train_params[k])
            print str_print
            all_lines.append(str_print)

        train_model(**train_params)

        test_model(**test_params)

    getting_accuracy.print_accuracy(out_dir_meta,
                                    pre_pend,
                                    strs_append,
                                    folds,
                                    log='log.txt')
Exemplo n.º 4
0
def train_gray(wdecay,
               lr,
               route_iter,
               folds=[4, 9],
               model_name='vgg_capsule_bp4d',
               epoch_stuff=[30, 60],
               res=False,
               class_weights=False,
               reconstruct=False,
               loss_weights=None,
               exp=False,
               disfa=False,
               vgg_base_file=None,
               vgg_base_file_str=None,
               mean_file=None,
               std_file=None,
               aug_more=False,
               align=True):
    out_dirs = []

    out_dir_meta = '../experiments/' + model_name + str(route_iter)
    num_epochs = epoch_stuff[1]
    epoch_start = 0
    if exp:
        dec_after = ['exp', 0.96, epoch_stuff[0], 1e-6]
    else:
        dec_after = ['step', epoch_stuff[0], 0.1]

    lr = lr
    im_resize = 110
    # 256
    im_size = 96
    save_after = 1
    if disfa:
        dir_files = '../data/disfa'
        # type_data = 'train_test_10_6_method_110_gray_align'; n_classes = 10;
        type_data = 'train_test_8_au_all_method_110_gray_align'
        n_classes = 8
        pre_pend = 'disfa_' + type_data + '_'
        binarize = True
    else:
        dir_files = '../data/bp4d'
        if align:
            type_data = 'train_test_files_110_gray_align'
            n_classes = 12
        else:
            type_data = 'train_test_files_110_gray_nodetect'
            n_classes = 12
        pre_pend = 'bp4d_' + type_data + '_'
        binarize = False

    criterion = 'marginmulti'
    criterion_str = criterion

    init = False
    aug_str = aug_more
    # if aug_more:
    #     aug_str = 'cropkhAugNoColor'
    # else:
    #     aug_str = 'flipCrop'

    strs_append = '_' + '_'.join([
        str(val) for val in [
            'reconstruct', reconstruct, class_weights, aug_str, criterion_str,
            init, 'wdecay', wdecay, num_epochs
        ] + dec_after + lr + ['lossweights'] + loss_weights +
        [vgg_base_file_str]
    ])

    lr_p = lr[:]
    for split_num in folds:

        if res:

            # strs_appendc = '_'+'_'.join([str(val) for val in ['reconstruct',reconstruct,True,'flipCrop',criterion_str,init,'wdecay',wdecay,10,'exp',0.96,350,1e-6]+['lossweights']+loss_weights])
            # dec_afterc = dec_after
            strs_appendc = '_' + '_'.join([
                str(val) for val in [
                    'reconstruct', reconstruct, True, aug_str, criterion_str,
                    init, 'wdecay', wdecay, 10
                ] + dec_after + lr + ['lossweights'] + loss_weights +
                [vgg_base_file_str]
            ])

            out_dir_train = os.path.join(
                out_dir_meta, pre_pend + str(split_num) + strs_appendc)
            model_file = os.path.join(out_dir_train, 'model_9.pt')
            epoch_start = 10
            # lr =[0.1*lr_curr for lr_curr in lr_p]

        else:
            model_file = None

        margin_params = None

        out_dir_train = os.path.join(out_dir_meta,
                                     pre_pend + str(split_num) + strs_append)
        final_model_file = os.path.join(out_dir_train,
                                        'model_' + str(num_epochs - 1) + '.pt')
        if os.path.exists(final_model_file):
            print 'skipping', final_model_file
            # raw_input()
            # continue
        else:
            print 'not skipping', final_model_file
            # raw_input()
            # continue

        train_file = os.path.join(dir_files, type_data,
                                  'train_' + str(split_num) + '.txt')
        test_file = os.path.join(dir_files, type_data,
                                 'test_' + str(split_num) + '.txt')
        if vgg_base_file is None:
            mean_file = os.path.join(dir_files, type_data,
                                     'train_' + str(split_num) + '_mean.png')
            std_file = os.path.join(dir_files, type_data,
                                    'train_' + str(split_num) + '_std.png')

        print train_file
        print test_file
        print mean_file
        print std_file
        # raw_input()

        class_weights = util.get_class_weights_au(
            util.readLinesFromFile(train_file))

        data_transforms = {}
        if aug_more == 'cropkhAugNoColor':
            train_resize = None
            print 'AUGING MORE'
            list_of_todos = ['flip', 'rotate', 'scale_translate']

            data_transforms['train'] = transforms.Compose([
                lambda x: augmenters.random_crop(x, im_size),
                lambda x: augmenters.augment_image(x, list_of_todos),
                # lambda x: augmenters.horizontal_flip(x),
                transforms.ToTensor(),
                lambda x: x * 255,
            ])
        elif aug_more == 'cropFlip':
            train_resize = None
            data_transforms['train'] = transforms.Compose([
                lambda x: augmenters.random_crop(x, im_size),
                lambda x: augmenters.horizontal_flip(x),
                transforms.ToTensor(),
                lambda x: x * 255,
            ])
        elif aug_more == 'NONE':
            train_resize = im_size
            data_transforms['train'] = transforms.Compose([
                transforms.ToTensor(),
                lambda x: x * 255,
            ])
        else:
            raise ValueError('aug_more is problematic')

        data_transforms['val'] = transforms.Compose([
            transforms.ToTensor(),
            lambda x: x * 255,
        ])

        train_data = dataset.Bp4d_Dataset_Mean_Std_Im(
            train_file,
            mean_file,
            std_file,
            transform=data_transforms['train'],
            binarize=binarize,
            resize=train_resize)
        test_data = dataset.Bp4d_Dataset_Mean_Std_Im(
            test_file,
            mean_file,
            std_file,
            resize=im_size,
            transform=data_transforms['val'],
            binarize=binarize)

        # train_data = dataset.Bp4d_Dataset_Mean_Std_Im(test_file, mean_file, std_file, resize= im_size, transform = data_transforms['val'])

        network_params = dict(n_classes=n_classes,
                              pool_type='max',
                              r=route_iter,
                              init=init,
                              class_weights=class_weights,
                              reconstruct=reconstruct,
                              loss_weights=loss_weights,
                              vgg_base_file=vgg_base_file)

        batch_size = 128
        batch_size_val = 128

        util.makedirs(out_dir_train)

        train_params = dict(out_dir_train=out_dir_train,
                            train_data=train_data,
                            test_data=test_data,
                            batch_size=batch_size,
                            batch_size_val=batch_size_val,
                            num_epochs=num_epochs,
                            save_after=save_after,
                            disp_after=1,
                            plot_after=10,
                            test_after=1,
                            lr=lr,
                            dec_after=dec_after,
                            model_name=model_name,
                            criterion=criterion,
                            gpu_id=0,
                            num_workers=0,
                            model_file=model_file,
                            epoch_start=epoch_start,
                            margin_params=margin_params,
                            network_params=network_params,
                            weight_decay=wdecay)
        test_params = dict(out_dir_train=out_dir_train,
                           model_num=num_epochs - 1,
                           train_data=train_data,
                           test_data=test_data,
                           gpu_id=0,
                           model_name=model_name,
                           batch_size_val=batch_size_val,
                           criterion=criterion,
                           margin_params=margin_params,
                           network_params=network_params,
                           barebones=True)
        # test_params_train = dict(**test_params)
        # test_params_train['test_data'] = train_data_no_t
        # test_params_train['post_pend'] = '_train'

        print train_params
        param_file = os.path.join(out_dir_train, 'params.txt')
        all_lines = []
        for k in train_params.keys():
            str_print = '%s: %s' % (k, train_params[k])
            print str_print
            all_lines.append(str_print)
        util.writeFile(param_file, all_lines)

        # if reconstruct:

        train_model_recon(**train_params)
        test_model_recon(**test_params)
        # test_model_recon(**test_params_train)

        # else:
        #     train_model(**train_params)
        # test_params = dict(out_dir_train = out_dir_train,
        #         model_num = num_epochs-1,
        #         train_data = train_data,
        #         test_data = test_data,
        #         gpu_id = 0,
        #         model_name = model_name,
        #         batch_size_val = batch_size_val,
        #         criterion = criterion,
        #         margin_params = margin_params,
        #         network_params = network_params)
        # test_model(**test_params)

    getting_accuracy.print_accuracy(out_dir_meta,
                                    pre_pend,
                                    strs_append,
                                    folds,
                                    log='log.txt')
Exemplo n.º 5
0
def save_test_results(wdecay,
                      lr,
                      route_iter,
                      folds=[4, 9],
                      model_name='vgg_capsule_bp4d',
                      epoch_stuff=[30, 60],
                      res=False,
                      class_weights=False,
                      reconstruct=False,
                      loss_weights=None,
                      models_to_test=None,
                      exp=False,
                      disfa=False):
    out_dirs = []

    out_dir_meta = '../experiments/' + model_name + str(route_iter)
    num_epochs = epoch_stuff[1]
    epoch_start = 0
    # dec_after = ['exp',0.96,epoch_stuff[0],1e-6]
    if exp:
        dec_after = ['exp', 0.96, epoch_stuff[0], 1e-6]
    else:
        dec_after = ['step', epoch_stuff[0], 0.1]

    lr = lr
    im_resize = 110
    # 256
    im_size = 96
    # save_after = 1

    if disfa:
        dir_files = '../data/disfa'
        # type_data = 'train_test_10_6_method_110_gray_align'; n_classes = 10;
        type_data = 'train_test_8_au_all_method_110_gray_align'
        n_classes = 8
        pre_pend = 'disfa_' + type_data + '_'
        binarize = True
    else:
        dir_files = '../data/bp4d'
        type_data = 'train_test_files_110_gray_align'
        n_classes = 12
        pre_pend = 'bp4d_' + type_data + '_'
        binarize = False

    criterion = 'marginmulti'
    criterion_str = criterion

    init = False

    strs_append = '_' + '_'.join([
        str(val) for val in [
            'reconstruct', reconstruct, class_weights, 'flipCrop',
            criterion_str, init, 'wdecay', wdecay, num_epochs
        ] + dec_after + lr + ['lossweights'] + loss_weights
    ])

    # pre_pend = 'bp4d_110_'

    lr_p = lr[:]
    for split_num in folds:
        for model_num_curr in models_to_test:
            margin_params = None
            out_dir_train = os.path.join(
                out_dir_meta, pre_pend + str(split_num) + strs_append)
            final_model_file = os.path.join(
                out_dir_train, 'model_' + str(num_epochs - 1) + '.pt')

            if os.path.exists(
                    os.path.join(out_dir_train,
                                 'results_model_' + str(model_num_curr))):
                print 'exists', model_num_curr, split_num
                print out_dir_train
                # continue
            else:

                print 'does not exist', model_num_curr, split_num
                # print 'bp4d_train_test_files_110_gray_align_0_reconstruct_True_True_flipCrop_marginmulti_False_wdecay_0_20_exp_0.96_350_1e-06_0.001_0.001_0.001_lossweights_1.0_1.0'
                print out_dir_train
                # raw_input()

            # if os.path.exists(final_model_file):
            #     print 'skipping',final_model_file
            #     # raw_input()
            #     # continue
            # else:
            #     print 'not skipping', final_model_file
            #     # raw_input()
            #     # continue

            train_file = os.path.join(dir_files, type_data,
                                      'train_' + str(split_num) + '.txt')
            test_file = os.path.join(dir_files, type_data,
                                     'test_' + str(split_num) + '.txt')
            mean_file = os.path.join(dir_files, type_data,
                                     'train_' + str(split_num) + '_mean.png')
            std_file = os.path.join(dir_files, type_data,
                                    'train_' + str(split_num) + '_std.png')

            # train_file = os.path.join('../data/bp4d',type_data,'train_'+str(split_num)+'.txt')
            # test_file = os.path.join('../data/bp4d',type_data,'test_'+str(split_num)+'.txt')

            if model_name.startswith('vgg'):
                mean_std = np.array([[93.5940, 104.7624, 129.1863],
                                     [1., 1., 1.]])  #bgr
                bgr = True
            else:
                # print 'ELSING'
                # mean_std = np.array([[129.1863,104.7624,93.5940],[1.,1.,1.]])
                mean_std = np.array([[0.485 * 255, 0.456 * 255, 0.406 * 255],
                                     [0.229 * 255, 0.224 * 255, 0.225 * 255]])
                # print mean_std
                # raw_input()
                bgr = False

            # print mean_std

            # mean_im = scipy.misc.imread(mean_file).astype(np.float32)
            # std_im = scipy.misc.imread(std_file).astype(np.float32)

            class_weights = util.get_class_weights_au(
                util.readLinesFromFile(train_file))
            data_transforms = {}
            data_transforms['train'] = transforms.Compose([
                lambda x: augmenters.random_crop(x, im_size),
                lambda x: augmenters.horizontal_flip(x),
                transforms.ToTensor(),
                lambda x: x * 255,
            ])
            data_transforms['val'] = transforms.Compose([
                # transforms.ToPILImage(),
                # transforms.Resize((im_size,im_size)),
                # lambda x: augmenters.resize(x,im_size),
                transforms.ToTensor(),
                lambda x: x * 255,
            ])

            # data_transforms = {}
            # data_transforms['train']= transforms.Compose([
            #     transforms.ToPILImage(),
            #     # transforms.Resize((im_resize,im_resize)),
            #     transforms.RandomCrop(im_size),
            #     transforms.RandomHorizontalFlip(),
            #     transforms.RandomRotation(15),
            #     transforms.ColorJitter(),
            #     transforms.ToTensor(),
            #     lambda x: x*255,
            #     transforms.Normalize(mean_std[0,:],mean_std[1,:]),
            # ])
            # data_transforms['val']= transforms.Compose([
            #     transforms.ToPILImage(),
            #     transforms.Resize((im_size,im_size)),
            #     transforms.ToTensor(),
            #     lambda x: x*255,
            #     transforms.Normalize(mean_std[0,:],mean_std[1,:]),
            #     ])

            # print train_file
            # print test_file
            # train_data = dataset.Bp4d_Dataset(train_file, bgr = bgr, transform = data_transforms['train'])
            # test_data = dataset.Bp4d_Dataset(test_file, bgr = bgr, transform = data_transforms['val'])

            train_data = dataset.Bp4d_Dataset_Mean_Std_Im(
                train_file,
                mean_file,
                std_file,
                transform=data_transforms['train'],
                binarize=binarize)
            test_data = dataset.Bp4d_Dataset_Mean_Std_Im(
                test_file,
                mean_file,
                std_file,
                resize=im_size,
                transform=data_transforms['val'],
                binarize=binarize)

            network_params = dict(n_classes=n_classes,
                                  pool_type='max',
                                  r=route_iter,
                                  init=init,
                                  class_weights=class_weights,
                                  reconstruct=reconstruct,
                                  loss_weights=loss_weights)

            batch_size = 96
            batch_size_val = 96

            util.makedirs(out_dir_train)

            test_params = dict(out_dir_train=out_dir_train,
                               model_num=model_num_curr,
                               train_data=train_data,
                               test_data=test_data,
                               gpu_id=0,
                               model_name=model_name,
                               batch_size_val=batch_size_val,
                               criterion=criterion,
                               margin_params=margin_params,
                               network_params=network_params,
                               barebones=True)
            test_model_recon(**test_params)
Exemplo n.º 6
0
def train_vgg(wdecay,
              lr,
              route_iter,
              folds=[4, 9],
              model_name='vgg_capsule_bp4d',
              epoch_stuff=[30, 60],
              res=False,
              class_weights=False,
              reconstruct=False,
              loss_weights=None,
              exp=False,
              align=False,
              disfa=False,
              more_aug=False,
              dropout=None,
              model_to_test=None,
              gpu_id=0,
              test_mode=False):
    out_dirs = []

    out_dir_meta = '../experiments/' + model_name + str(route_iter)
    num_epochs = epoch_stuff[1]

    if model_to_test is None:
        model_to_test = num_epochs - 1

    epoch_start = 0
    if exp:
        dec_after = ['exp', 0.96, epoch_stuff[0], 1e-6]
    else:
        dec_after = ['step', epoch_stuff[0], 0.1]

    lr = lr

    if model_name.startswith('vgg'):
        im_resize = 256
        im_size = 224
        if not disfa:
            dir_files = '../data/bp4d'
            if align:
                type_data = 'train_test_files_256_color_align'
                n_classes = 12
            else:
                type_data = 'train_test_files_256_color_nodetect'
                n_classes = 12
            pre_pend = 'bp4d_256_' + type_data + '_'
            binarize = False
        else:
            dir_files = '../data/disfa'
            type_data = 'train_test_8_au_all_method_256_color_align'
            n_classes = 8
            pre_pend = 'disfa_' + type_data + '_'
            binarize = True
            pre_pend = 'disfa_256_' + type_data + '_'
    else:
        if not disfa:
            im_resize = 110
            im_size = 96
            binarize = False
            dir_files = '../data/bp4d'
            type_data = 'train_test_files_110_color_align'
            n_classes = 12
            pre_pend = 'bp4d_110_'
        else:
            im_resize = 110
            im_size = 96
            dir_files = '../data/disfa'
            type_data = 'train_test_8_au_all_method_110_color_align'
            n_classes = 8
            binarize = True
            pre_pend = 'disfa_110_' + type_data + '_'

    save_after = 1
    criterion = 'marginmulti'
    criterion_str = criterion

    init = False

    strs_append_list = [
        'reconstruct', reconstruct, class_weights, 'all_aug', criterion_str,
        init, 'wdecay', wdecay, num_epochs
    ] + dec_after + lr + [more_aug] + [dropout]
    if loss_weights is not None:
        strs_append_list = strs_append_list + ['lossweights'] + loss_weights
    strs_append = '_' + '_'.join([str(val) for val in strs_append_list])

    lr_p = lr[:]
    for split_num in folds:

        if res:

            strs_append_list_c = [
                'reconstruct', reconstruct, False, 'all_aug', criterion_str,
                init, 'wdecay', wdecay, 10
            ] + ['step', 10, 0.1] + lr + [more_aug] + [dropout]
            # print dec_after
            # raw_input()
            if loss_weights is not None:
                strs_append_list_c = strs_append_list_c + ['lossweights'
                                                           ] + loss_weights

            strs_append_c = '_' + '_'.join(
                [str(val) for val in strs_append_list_c])
            out_dir_train = os.path.join(
                out_dir_meta, pre_pend + str(split_num) + strs_append_c)

            model_file = os.path.join(out_dir_train, 'model_4.pt')
            epoch_start = 5
            lr = [val * 0.1 for val in lr]
            print 'FILE EXISTS', os.path.exists(
                model_file), model_file, epoch_start

            raw_input()

        else:
            model_file = None

        margin_params = None

        out_dir_train = os.path.join(out_dir_meta,
                                     pre_pend + str(split_num) + strs_append)
        final_model_file = os.path.join(out_dir_train,
                                        'model_' + str(num_epochs - 1) + '.pt')
        # final_model_file = os.path.join(out_dir_train,'results_model_'+str(model_to_test))
        if os.path.exists(final_model_file) and not test_mode:
            print 'skipping', final_model_file
            # raw_input()
            continue
        else:
            print 'not skipping', final_model_file
            # raw_input()
            # continue

        train_file = os.path.join(dir_files, type_data,
                                  'train_' + str(split_num) + '.txt')
        test_file = os.path.join(dir_files, type_data,
                                 'test_' + str(split_num) + '.txt')

        data_transforms = None
        if model_name.startswith('vgg_capsule_7_3_imagenet'
                                 ) or model_name.startswith('scratch_'):
            # mean_std = np.array([[93.5940,104.7624,129.1863],[1.,1.,1.]]) #bgr
            # std_div = np.array([0.225*255,0.224*255,0.229*255])
            # print std_div
            # raw_input()
            mean_std = np.array([[0.485, 0.456, 0.406], [0.229, 0.224, 0.225]])

            bgr = False
            normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                             std=[0.229, 0.224, 0.225])
            std_div = None

            data_transforms = {}
            data_transforms['train'] = [
                transforms.ToPILImage(),
                transforms.RandomCrop(im_size),
                transforms.RandomHorizontalFlip(),
                transforms.RandomRotation(15),
                transforms.ColorJitter(),
                transforms.ToTensor(), normalize
            ]
            data_transforms['val'] = [
                transforms.ToPILImage(),
                transforms.Resize((im_size, im_size)),
                transforms.ToTensor(), normalize
            ]

            if torch.version.cuda.startswith('9'):
                data_transforms['train'].append(lambda x: x.float())
                data_transforms['val'].append(lambda x: x.float())

            data_transforms['train'] = transforms.Compose(
                data_transforms['train'])
            data_transforms['val'] = transforms.Compose(data_transforms['val'])

            train_data = dataset.Bp4d_Dataset(
                train_file,
                bgr=bgr,
                binarize=binarize,
                transform=data_transforms['train'])
            test_data = dataset.Bp4d_Dataset(test_file,
                                             bgr=bgr,
                                             binarize=binarize,
                                             transform=data_transforms['val'])

        elif model_name.startswith('vgg'):
            mean_std = np.array([[93.5940, 104.7624, 129.1863], [1., 1.,
                                                                 1.]])  #bgr
            std_div = np.array([0.225 * 255, 0.224 * 255, 0.229 * 255])
            print std_div
            # raw_input()
            bgr = True
        else:
            mean_std = np.array([[0.485 * 255, 0.456 * 255, 0.406 * 255],
                                 [0.229 * 255, 0.224 * 255, 0.225 * 255]])
            bgr = False

        print mean_std

        class_weights = util.get_class_weights_au(
            util.readLinesFromFile(train_file))

        if data_transforms is None:
            data_transforms = {}
            if more_aug == 'MORE':
                print more_aug
                list_of_to_dos = ['flip', 'rotate', 'scale_translate']

                # print torch.version.cuda
                # raw_input()
                if torch.version.cuda.startswith('9'):
                    # print 'HEYLO'
                    # raw_input()
                    data_transforms['train'] = transforms.Compose([
                        lambda x: augmenters.random_crop(x, im_size),
                        lambda x: augmenters.augment_image(
                            x, list_of_to_dos, color=True, im_size=im_size),
                        transforms.ToTensor(), lambda x: x.float()
                    ])
                    data_transforms['val'] = transforms.Compose(
                        [transforms.ToTensor(), lambda x: x.float()])
                else:
                    data_transforms['train'] = transforms.Compose([
                        lambda x: augmenters.random_crop(x, im_size),
                        lambda x: augmenters.augment_image(
                            x, list_of_to_dos, color=True, im_size=im_size),
                        transforms.ToTensor(),
                        lambda x: x * 255,
                    ])
                    data_transforms['val'] = transforms.Compose([
                        transforms.ToTensor(),
                        lambda x: x * 255,
                    ])

                train_data = dataset.Bp4d_Dataset_with_mean_std_val(
                    train_file,
                    bgr=bgr,
                    binarize=binarize,
                    mean_std=mean_std,
                    transform=data_transforms['train'])
                test_data = dataset.Bp4d_Dataset_with_mean_std_val(
                    test_file,
                    bgr=bgr,
                    binarize=binarize,
                    mean_std=mean_std,
                    transform=data_transforms['val'],
                    resize=im_size)
            elif more_aug == 'LESS':
                # std_div = None
                data_transforms['train'] = transforms.Compose([
                    transforms.ToPILImage(),
                    # transforms.Resize((im_resize,im_resize)),
                    transforms.RandomCrop(im_size),
                    transforms.RandomHorizontalFlip(),
                    transforms.RandomRotation(15),
                    transforms.ColorJitter(),
                    transforms.ToTensor(),
                    lambda x: x * 255,
                    transforms.Normalize(mean_std[0, :], mean_std[1, :]),
                ])
                data_transforms['val'] = transforms.Compose([
                    transforms.ToPILImage(),
                    transforms.Resize((im_size, im_size)),
                    transforms.ToTensor(),
                    lambda x: x * 255,
                    transforms.Normalize(mean_std[0, :], mean_std[1, :]),
                ])

                train_data = dataset.Bp4d_Dataset(
                    train_file,
                    bgr=bgr,
                    binarize=binarize,
                    transform=data_transforms['train'])
                test_data = dataset.Bp4d_Dataset(
                    test_file,
                    bgr=bgr,
                    binarize=binarize,
                    transform=data_transforms['val'])
            elif more_aug == 'NONE':
                print 'NO AUGING'
                data_transforms['train'] = transforms.Compose(
                    [transforms.ToTensor(), lambda x: x * 255])
                data_transforms['val'] = transforms.Compose(
                    [transforms.ToTensor(), lambda x: x * 255])
                train_data = dataset.Bp4d_Dataset_with_mean_std_val(
                    train_file,
                    bgr=bgr,
                    binarize=binarize,
                    mean_std=mean_std,
                    transform=data_transforms['train'],
                    resize=im_size)
                test_data = dataset.Bp4d_Dataset_with_mean_std_val(
                    test_file,
                    bgr=bgr,
                    binarize=binarize,
                    mean_std=mean_std,
                    transform=data_transforms['val'],
                    resize=im_size)
            else:
                raise ValueError('more_aug not valid')

        if dropout is not None:
            print 'RECONS', reconstruct
            network_params = dict(n_classes=n_classes,
                                  pool_type='max',
                                  r=route_iter,
                                  init=init,
                                  class_weights=class_weights,
                                  reconstruct=reconstruct,
                                  loss_weights=loss_weights,
                                  std_div=std_div,
                                  dropout=dropout)
        else:
            network_params = dict(n_classes=n_classes,
                                  pool_type='max',
                                  r=route_iter,
                                  init=init,
                                  class_weights=class_weights,
                                  reconstruct=reconstruct,
                                  loss_weights=loss_weights,
                                  std_div=std_div)

        batch_size = 32
        batch_size_val = 32

        util.makedirs(out_dir_train)

        train_params = dict(out_dir_train=out_dir_train,
                            train_data=train_data,
                            test_data=test_data,
                            batch_size=batch_size,
                            batch_size_val=batch_size_val,
                            num_epochs=num_epochs,
                            save_after=save_after,
                            disp_after=1,
                            plot_after=100,
                            test_after=1,
                            lr=lr,
                            dec_after=dec_after,
                            model_name=model_name,
                            criterion=criterion,
                            gpu_id=gpu_id,
                            num_workers=0,
                            model_file=model_file,
                            epoch_start=epoch_start,
                            margin_params=margin_params,
                            network_params=network_params,
                            weight_decay=wdecay)
        test_params = dict(out_dir_train=out_dir_train,
                           model_num=model_to_test,
                           train_data=train_data,
                           test_data=test_data,
                           gpu_id=gpu_id,
                           model_name=model_name,
                           batch_size_val=batch_size_val,
                           criterion=criterion,
                           margin_params=margin_params,
                           network_params=network_params,
                           barebones=True)
        # test_params_train = dict(**test_params)
        # test_params_train['test_data'] = train_data_no_t
        # test_params_train['post_pend'] = '_train'

        print train_params
        param_file = os.path.join(out_dir_train, 'params.txt')
        all_lines = []
        for k in train_params.keys():
            str_print = '%s: %s' % (k, train_params[k])
            print str_print
            all_lines.append(str_print)
        # util.writeFile(param_file,all_lines)

        # if reconstruct:
        if not test_mode:
            train_model_recon(**train_params)

        test_model_recon(**test_params)

        # test_params = dict(out_dir_train = out_dir_train,
        #             model_num = 4,
        #             train_data = train_data,
        #             test_data = test_data,
        #             gpu_id = gpu_id,
        #             model_name = model_name,
        #             batch_size_val = batch_size_val,
        #             criterion = criterion,
        #             margin_params = margin_params,
        #             network_params = network_params,barebones=True)

        # test_model_recon(**test_params)

    getting_accuracy.print_accuracy(out_dir_meta,
                                    pre_pend,
                                    strs_append,
                                    folds,
                                    log='log.txt')
Exemplo n.º 7
0
def train_simple_mill_all_classes(model_name,
                                  lr,
                                  dataset,
                                  network_params,
                                  limit,
                                  epoch_stuff=[30, 60],
                                  res=False,
                                  class_weights=False,
                                  batch_size=32,
                                  batch_size_val=32,
                                  save_after=1,
                                  model_file=None,
                                  gpu_id=0,
                                  exp=False,
                                  test_mode=False,
                                  test_after=1,
                                  all_classes=False,
                                  just_primary=False,
                                  model_nums=None,
                                  retrain=False,
                                  viz_mode=False,
                                  det_class=-1,
                                  second_thresh=0.5,
                                  first_thresh=0,
                                  post_pend='',
                                  viz_sim=False,
                                  test_post_pend='',
                                  multibranch=1,
                                  loss_weights=None,
                                  branch_to_test=0,
                                  gt_vec=False,
                                  k_vec=None,
                                  attention=False,
                                  save_outfs=False,
                                  test_pair=False,
                                  criterion_str=None,
                                  test_method='original',
                                  plot_losses=False,
                                  num_similar=0,
                                  det_test=False):

    num_epochs = epoch_stuff[1]

    if model_file is not None:
        [model_file, epoch_start] = model_file
    else:
        epoch_start = 0

    if exp:
        dec_after = ['exp', 0.96, epoch_stuff[0], 1e-6]
    else:
        dec_after = ['step', epoch_stuff[0], 0.1]

    lr = lr

    train_data, test_train_data, test_data, n_classes, trim_preds = get_data(
        dataset,
        limit,
        all_classes,
        just_primary,
        gt_vec,
        k_vec,
        test_pair=test_pair,
        num_similar=num_similar)

    network_params['n_classes'] = n_classes

    train_file = train_data.anno_file

    if class_weights:
        pos_weight = util.get_pos_class_weight(
            util.readLinesFromFile(train_file), n_classes)
        class_weights_val = util.get_class_weights_au(
            util.readLinesFromFile(train_file), n_classes)
        class_weights_val = [pos_weight, class_weights_val]
    else:
        class_weights_val = None

    criterion, criterion_str = get_criterion(criterion_str,
                                             attention,
                                             class_weights_val,
                                             loss_weights,
                                             multibranch,
                                             num_similar=num_similar)

    init = False

    out_dir_meta = os.path.join('../experiments', model_name)
    util.mkdir(out_dir_meta)

    out_dir_meta_str = [model_name]
    for k in network_params.keys():
        out_dir_meta_str.append(k)
        if type(network_params[k]) == type([]):
            out_dir_meta_str.extend(network_params[k])
        else:
            out_dir_meta_str.append(network_params[k])
    out_dir_meta_str.append(dataset)
    out_dir_meta_str = '_'.join([str(val) for val in out_dir_meta_str])

    out_dir_meta = os.path.join(out_dir_meta, out_dir_meta_str)
    # print out_dir_meta
    util.mkdir(out_dir_meta)

    strs_append_list = [
        'all_classes', all_classes, 'just_primary', just_primary, 'limit',
        limit, 'cw', class_weights, criterion_str, num_epochs
    ] + dec_after + lr

    if loss_weights is not None:
        strs_append_list += ['lw'] + ['%.2f' % val for val in loss_weights]

    strs_append_list += [post_pend] if len(post_pend) > 0 else []
    strs_append = '_'.join([str(val) for val in strs_append_list])

    out_dir_train = os.path.join(out_dir_meta, strs_append)
    final_model_file = os.path.join(out_dir_train,
                                    'model_' + str(num_epochs - 1) + '.pt')

    if os.path.exists(final_model_file) and not test_mode and not retrain:
        print 'skipping', final_model_file
        return
    else:
        print 'not skipping', final_model_file

    test_params_core = dict(trim_preds=trim_preds,
                            second_thresh=second_thresh,
                            first_thresh=first_thresh,
                            multibranch=multibranch,
                            branch_to_test=branch_to_test,
                            dataset=dataset,
                            test_pair=test_pair,
                            save_outfs=False,
                            test_method=test_method)
    train_params = dict(out_dir_train=out_dir_train,
                        train_data=train_data,
                        test_data=test_train_data,
                        test_args=test_params_core,
                        batch_size=batch_size,
                        batch_size_val=batch_size_val,
                        num_epochs=num_epochs,
                        save_after=save_after,
                        disp_after=1,
                        plot_after=1,
                        test_after=test_after,
                        lr=lr,
                        dec_after=dec_after,
                        model_name=model_name,
                        criterion=criterion,
                        gpu_id=gpu_id,
                        num_workers=0,
                        model_file=model_file,
                        epoch_start=epoch_start,
                        network_params=network_params,
                        multibranch=multibranch,
                        plot_losses=plot_losses,
                        det_test=det_test)

    if not test_mode:
        train_model_new(**train_params)

    if model_nums is None:
        model_nums = [num_epochs - 1]

    for model_num in model_nums:

        print 'MODEL NUM', model_num
        # if save_outfs:
        #     save_outfs = os.path.join(out_dir_train, str(model_num)+'_out')
        #     util.mkdir(save_outfs)

        test_params = dict(out_dir_train=out_dir_train,
                           model_num=model_num,
                           test_data=test_data,
                           batch_size_val=batch_size_val,
                           criterion=criterion,
                           gpu_id=gpu_id,
                           num_workers=0,
                           trim_preds=trim_preds,
                           visualize=False,
                           det_class=det_class,
                           second_thresh=second_thresh,
                           first_thresh=first_thresh,
                           post_pend=test_post_pend,
                           multibranch=multibranch,
                           branch_to_test=branch_to_test,
                           dataset=dataset,
                           save_outfs=save_outfs,
                           test_pair=test_pair,
                           test_method=test_method)
        test_model(**test_params)
        if viz_mode:
            test_params = dict(out_dir_train=out_dir_train,
                               model_num=model_num,
                               test_data=test_data,
                               batch_size_val=batch_size_val,
                               criterion=criterion,
                               gpu_id=gpu_id,
                               num_workers=0,
                               trim_preds=trim_preds,
                               visualize=True,
                               det_class=det_class,
                               second_thresh=second_thresh,
                               first_thresh=first_thresh,
                               post_pend=test_post_pend,
                               multibranch=multibranch,
                               branch_to_test=branch_to_test,
                               dataset=dataset)
            test_model(**test_params)