Exemplo n.º 1
0
def read_coocs():
    """
    Read the file "Cococcs of ingredients"
    """
    raw = dict(hp.dumpRead("Cococcs of ingredients"))
    coocs = dict()
    for key in raw:
        coocs[(key[0][2:-1].lower(), key[1][2:-1].lower())] = raw[key]
    return dict(sorted(coocs.items(), key=lambda item: item[1], reverse=True))
Exemplo n.º 2
0
def generate_ingredients_h(il=[], init=random.choice(hp.dumpRead("model/inglist_final"))):
    """
    Helper function for generate_ingredients()
    """
    coocs = read_coocs()
    selected = il
    for key in coocs:
        if len(il) < 20 and key[0] == init and key[0] not in selected:
            selected.append(key[1])
    return selected
Exemplo n.º 3
0
def generate_ingredients():
    """
    Generate a list of related ingredients
    It is possible to comment out this code and add a list of ingredients manually.
    For example:
        selected = ["pasta", "tomato", "garlic", "oil", "onions", "salt", "pepper"]
        return selected
    This way you can use custom ingredients
    """
    first = ""
    selected = []
    # Choose a random, valid first ingredient
    while first == "" or len(first) > 30:
        first = random.choice(hp.dumpRead("model/inglist_final"))
    # Get a list of 20 ingredients that are related to the previous ones
    # Not all 20 are used, this is just to make sure that the model does not run out of ingredients.
    # 20 is deduced by:
    #   [maximum length of a sentence] x [maximum percentage of ingredients in a sentence]
    #   50 x 0.40 = 20
    while len(selected) < 20:
        selected += generate_ingredients_h(init=random.choice(hp.dumpRead("model/inglist_final")))
    return selected
Exemplo n.º 4
0
def init_vars():
    """
    Prepare the data for training
    """
    data = hp.dumpRead(DATANAME)
    words = sorted(list(set(data)))
    ewords = dict((c, i) for i, c in enumerate(words))
    enumbs = dict((i, c) for i, c in enumerate(words))
    seq_length = 100
    dataX = []
    dataY = []
    for i in range(0, len(data) - seq_length, 1):
     	seq_in = data[i:i + seq_length]
     	seq_out = data[i + seq_length]
     	dataX.append([ewords[char] for char in seq_in])
     	dataY.append(ewords[seq_out])
    n_patterns = len(dataX)
    X = np.reshape(dataX, (n_patterns, seq_length, 1))
    X = X / float(len(words))
    y = np_utils.to_categorical(dataY)
    return (X, y, dataX, dataY, words, ewords, enumbs)
Exemplo n.º 5
0
# -*- coding: utf-8 -*-

import helpers as hp

a = hp.dumpRead()