def post(self, request, *args, **kwargs):
     if request.is_ajax():
         if request.POST.get('all') == 'true':
             path = os.path.join(settings.BASE_DIR, settings.STUB, settings.SAMPLE_NAME)
             with open(path, 'r') as f:
                 data = json.load(f)
         else:
             data = {'message': _('error!')}
         if request.POST.get('csv', 'false') != 'true':
             response = HttpResponse(json.dumps(data), content_type='application/json')
         else:
             response = HttpResponse(content_type='text/csv')
     else:
         response = super(WordleView, self).post(request, *args, **kwargs)
     if request.POST.get('csv') == 'true':
             response['Content-Disposition'] = 'attachment; filename="cloud.csv"'
             helpers.json2csv(response, data['nodes'])
     return response
Exemplo n.º 2
0
 def post(self, request, *args, **kwargs):
     response = HttpResponse()
     if request.is_ajax():
         if request.POST.get("all") == "true":
             path = os.path.join(settings.BASE_DIR, settings.STUB, settings.SAMPLE_NAME)
             with open(path) as f:
                 data = json.load(f)
         elif request.POST.get("verbatim") == "true":
             code_id = request.POST.get("id")
             data = self.get_verbatim(code_id)
         else:
             data = {"message": _("error")}
         if request.POST.get("csv", "false") != "true":
             response = HttpResponse(json.dumps(data), content_type="application/json")
         else:
             response["content_type"] = "text/csv"
     if request.POST.get("csv") == "true":
         response["Content-Disposition"] = 'attachment; filename="tree.csv"'
         helpers.json2csv(response, data["nodes"])
     return response
 def post(self, request, *args, **kwargs):
     response = HttpResponse()
     if request.is_ajax():
         if request.POST.get('all') == 'true':
             path = os.path.join(settings.BASE_DIR, settings.STUB,
                                 settings.SAMPLE_NAME)
             with open(path) as f:
                 data = json.load(f)
         elif request.POST.get('verbatim') == 'true':
             code_id = request.POST.get('id')
             data = self.get_verbatim(code_id)
         else:
             data = {'message': _('error')}
         if request.POST.get('csv', 'false') != 'true':
             response = HttpResponse(json.dumps(data),
                                     content_type='application/json')
         else:
             response['content_type'] = 'text/csv'
     if request.POST.get('csv') == 'true':
         response['Content-Disposition'] = 'attachment; filename="tree.csv"'
         helpers.json2csv(response, data['nodes'])
     return response
Exemplo n.º 4
0
 def post(self, request, *args, **kwargs):
     if request.is_ajax():
         if request.POST.get("all") == "true":
             # FIX: temporary data stub
             path = os.path.join(settings.BASE_DIR, stub, sample_name)
             with open(path, "r") as f:
                 data = json.load(f)
         elif request.POST.get("verbatim") == "true":
             code_id = request.POST.get("id")
             data = self.get_verbatim(code_id)
         else:
             data = {"message": _("error!")}
         if request.POST.get("csv", "false") != "true":
             response = HttpResponse(json.dumps(data), content_type="application/json")
         else:
             response = HttpResponse(content_type="text/csv")
     else:
         response = super(CloudView, self).get(request, *args, **kwargs)
     if request.POST.get("csv") == "true":
         response["Content-Disposition"] = 'attachment; filename="cloud.csv"'
         helpers.json2csv(response, data["nodes"])
     return response
 def post(self, request, *args, **kwargs):
     if request.is_ajax():
         if request.POST.get('all') == 'true':
             # FIX: temporary data stub
             path = os.path.join(settings.BASE_DIR, stub, sample_name)
             with open(path, 'r') as f:
                 data = json.load(f)
         elif request.POST.get('verbatim') == 'true':
             code_id = request.POST.get('id')
             data = self.get_verbatim(code_id)
         else:
             data = {'message': _('error!')}
         if request.POST.get('csv', 'false') != 'true':
             response = HttpResponse(json.dumps(data),
                                     content_type='application/json')
         else:
             response = HttpResponse(content_type='text/csv')
     else:
         response = super(CloudView, self).get(request, *args, **kwargs)
     if request.POST.get('csv') == 'true':
         response[
             'Content-Disposition'] = 'attachment; filename="cloud.csv"'
         helpers.json2csv(response, data['nodes'])
     return response
def object_detect(model_name,
                  url_file,
                  extension=EXTENSION,
                  downloaded=DOWNLOADED,
                  json_output_file=JSON_OUTPUT_FILE,
                  n_threads=N_THREADS,
                  visualize=VISUALIZE,
                  path_to_labels=PATH_TO_LABELS):

    model_file = model_name + '.tar.gz'
    path_to_ckpt = model_name + '/frozen_inference_graph.pb'

    json_url_file = url_file + '.json'
    csv_url_file = url_file + '.csv'

    helpers.download_extract_model(model_file=model_file,
                                   downloaded=downloaded)

    if extension == '.json':
        helpers.json2csv(json_name=json_url_file, csv_name=csv_url_file)

    li = pd.read_csv(csv_url_file)
    url_li = li['img_url'].tolist()
    id_li = li['img_id'].tolist()

    detection_graph = tf.Graph()
    with detection_graph.as_default():
        od_graph_def = tf.GraphDef()
        with tf.gfile.GFile(path_to_ckpt, 'rb') as fid:
            serialized_graph = fid.read()
            od_graph_def.ParseFromString(serialized_graph)
            tf.import_graph_def(od_graph_def, name='')

    with detection_graph.as_default():
        im = helpers.url_image_reader(url_li)

        queue = tf.PaddingFIFOQueue(capacity=500,
                                    dtypes=tf.uint8,
                                    shapes=[(None, None, None)])
        enq_op = queue.enqueue(im)
        inputs = queue.dequeue_many(BATCH_SIZE)
        qr = tf.train.QueueRunner(queue, [enq_op] * n_threads)

        with tf.Session(graph=detection_graph) as sess:

            sess.run(tf.global_variables_initializer())
            coord = tf.train.Coordinator()
            enqueue_threads = qr.create_threads(sess=sess,
                                                coord=coord,
                                                start=True)

            conversion_time = []
            ix = 1
            res = {}

            category_index = helpers.load_category_index(path_to_labels)

            t = time.time()

            try:
                while not coord.should_stop():
                    image = sess.run(
                        inputs)  # Tensor of dimension (1, None, None, 3)

                    print('Processing Image', ix)

                    image_tensor = detection_graph.get_tensor_by_name(
                        'image_tensor:0')
                    boxes = detection_graph.get_tensor_by_name(
                        'detection_boxes:0')
                    scores = detection_graph.get_tensor_by_name(
                        'detection_scores:0')
                    classes = detection_graph.get_tensor_by_name(
                        'detection_classes:0')
                    num_detections = detection_graph.get_tensor_by_name(
                        'num_detections:0')

                    t2 = time.time()

                    (boxes, scores, classes, num_detections) = sess.run(
                        [boxes, scores, classes, num_detections],
                        feed_dict={image_tensor: image})

                    conversion_time.append(time.time() - t2)

                    print('Image', ix, 'Processing Time:',
                          conversion_time[ix - 1], 'sec')

                    res[id_li[ix - 1]] = {
                        'boxes': np.squeeze(boxes),
                        'scores': np.squeeze(scores),
                        'classes': np.squeeze(classes).astype(np.int32),
                        'num_detections': num_detections
                    }

                    ix += 1

            except tf.errors.OutOfRangeError:
                print('Total Image Processing Time:', sum(conversion_time),
                      'sec')
                print('Total Time Consumed:', time.time() - t, 'sec')

            finally:
                coord.request_stop()

                helpers.dict2json(res, json_output_file)

                if visualize:
                    helpers.visualize(csv_url_file, res, category_index)

            coord.join(enqueue_threads)

    return res