Exemplo n.º 1
0
def knn_classify(data_file, K=5):
    # f_train, f_test, l_train, l_test = get_data(data_file)
    f_train, f_test, l_train, l_test = get_data_optimized(data_file)

    l_predict = []
    for t in range(f_test.shape[0]):
        N = []
        l = 0
        for d in range(f_train.shape[0]):
            if len(N) <= K:
                N.append(d)
            else:
                for u in N:
                    if dist(f_test[t], f_train[d]) < dist(f_test[t], f_train[u]):
                        N.remove(u)
                        N.append(d)
                        break
        for n in N:
            if l_train[n] == 'A':
                l += 1
            else:
                l -= 1
        if l >= 0:
            l_predict.append('A')
        else:
            l_predict.append('B')
    acc = (float(sum(l_predict == l_test))/len(l_predict))
    plot(f_train, l_train, f_test, l_test, l_predict, acc)
Exemplo n.º 2
0
def create_histogram(dimensions, label):

    numberofvalues = len(dimensions)

    #calculates the width for each annotation across the labels
    width = [width for width, height in dimensions.values()]  #95 percent

    width_zoom = sorted([width for width, height in dimensions.values()
                         ])[:int(.95 * numberofvalues)]
    #calculates height of each annotations across the labels
    height = [height for width, height in dimensions.values()]  #95 percent

    height_zoom = sorted([height for width, height in dimensions.values()
                          ])[:int(.95 * numberofvalues)]
    #calculates aspect ratio of each annotation across the labels
    aspect_ratio = [width / height for width, height in dimensions.values()]

    aspect_ratio_zoom = sorted([
        width / height for width, height in dimensions.values()
    ])[:int(.95 * numberofvalues)]

    # calculates areas of each annotation across the labels
    areas = [(width * height) / 100 for width, height in dimensions.values()]

    areas_zoom = sorted([
        (width * height) / 100 for width, height in dimensions.values()
    ])[:int(.85 * numberofvalues)]

    #bins = np.arange(start=min(areas),stop=300,step=30)
    # plot(width,label,'Width')
    # plot(height,label,'Height')
    # plot(aspect_ratio,label,'Aspect Ratio')
    plot(areas_zoom, label, 'Areas Zoom')
Exemplo n.º 3
0
def constantFrequencyExample(start=1.9, duration=0.5):
    filteredSignal = helpers.getSignal(start, duration, low_pass=100, high_pass=90, input_file="raw-epdf.wav")
    spectrum = helpers.getSpectrum(start, duration, low_pass=100, high_pass=90, input_file="raw-epdf.wav")

    segment = helpers.getSegment(start, duration, input_file="raw-epdf.wav")
    helpers.makeWavFromSpectrum(spectrum, segment, outputFile="recoveredWav.wav")
    # firstPeak = min([i[0] for i in spectrum.peaks()])
    helpers.plot(spectrum)
Exemplo n.º 4
0
def generate_borders(source,
                     borders_only=False,
                     labels=False,
                     self_clip=False,
                     trim_antarctica=False):
    """data from http://www.naturalearthdata.com/"""
    sf = shapefile.Reader("data/{}_admin_0_countries".format(source))
    sovereigns = {}  #key is 3-char code, value is list of (record,shape)
    for record, shape in zip(sf.records(), sf.shapes()):
        if trim_antarctica:
            if record[4] == 'ATA':  #if it is Antarctica
                shape.points = trim_edges(shape.points)

        sovereigns[record[4]] = sovereigns.get(record[4],
                                               []) + [(record, shape)]

    for code in sorted(sovereigns.keys()):
        for record, shape in sovereigns[code]:
            if record[3] == record[8]:
                country_code = record[12]
                # metropole = (record, shape)
                # sovereigns[code].remove(metropole) #move the metropole to the front
                # sovereigns[code] = [metropole] + sovereigns[code]
                # break
        print('\t\t\t<g id="{}">'.format(country_code))
        for record, shape in sovereigns[code]:
            x1, y1, x2, y2 = shape.bbox
            x = (x1 + x2) / 2
            y = (y1 + y2) / 2
            region_code = record[12]
            if country_code == region_code:  #metropole
                # name = record[3]
                text_size = SIZE_CLASSES[int(record[2] - 2)]
            else:  #dependency
                # name = '{} ({})'.format(record[8], record[3])
                text_size = SIZE_CLASSES[int(record[2] - 1)]
        # 	if labels:
        # 		if text_size is not None:
        # 			print('\t\t\t\t<text class="label-{}" x="{:.3f}" y="{:.3f}">{}</text>'.format(text_size, x, y, name))
            if borders_only:
                print(
                    '\t\t\t\t<clipPath id="{0}-clipPath">'.format(region_code))
                print(
                    '\t\t\t\t\t<use href="#{0}-shape" />'.format(region_code))
                print('\t\t\t\t</clipPath>')
                print(
                    '\t\t\t\t<use href="#{0}-shape" style="fill:none; clip-path:url(#{0}-clipPath);" />'
                    .format(region_code))
            else:
                plot(shape.points,
                     midx=shape.parts,
                     close=False,
                     fourmat='xd',
                     tabs=4,
                     ident="{0}-shape".format(region_code))
        print('\t\t\t</g>')
Exemplo n.º 5
0
def harmonics(base_frequency=400):
    # cos_sig = thinkdsp.CosSignal(freq=440, amp=1.0, offset=0)

    base_signal = thinkdsp.CosSignal(base_frequency, amp=1.0, offset=0)
    for i in xrange(2, 6):
        base_signal += thinkdsp.CosSignal(base_frequency * i, amp=1.0, offset=0)

    wave = base_signal.make_wave(duration=0.5, start=0, framerate=11025)
    spectrum = wave.make_spectrum()

    # helpers.makeWavFromSpectrum(spectrum, wave, 'exercise7.wav')
    helpers.plot(spectrum)
Exemplo n.º 6
0
def underWaterSpectrum(signal, distance, absorbtionRate):
	spectrum = signal.make_spectrum()
	originalSpectrum = signal.make_spectrum()
	baseFrequency = getBaseFrequency(signal)
	index = 0;

	for freq in spectrum.fs:
		attenuation = attenuationFactor(distance, absorbtionRate, baseFrequency, freq)
		spectrum.amps[index] = spectrum.amps[index]/attenuation
		index += 1
	helpers.plot(spectrum)
	return spectrum
def plot_side_indicatrix(phi0, r, res, side_res=1):
    points = []
    midx = [0]
    for l in range(0, 181, 360 // res):
        pr, lr = obliquify(math.pi / 2 - r, math.radians(l), phi0, 0)
        points.append((pr, lr - math.pi))
    for i in range(side_res):
        points.append((phi0 + r - (2 * r) / side_res * (i + 1), -math.pi))
    midx.append(len(points))
    for l in range(180, 361, 360 // res):
        pr, lr = obliquify(math.pi / 2 - r, math.radians(l), phi0, 0)
        points.append((pr, lr + math.pi))
    for i in range(side_res):
        points.append((phi0 - r + (2 * r) / side_res * (i + 1), math.pi))
    plot(points, midx=midx, close=False)
Exemplo n.º 8
0
def create_plot(doc):
    """Create a static plot."""
    doc.clear()
    # doc.theme = Theme(filename=join(getcwd(), 'theme.yaml'))
    sp = StockPrices()

    figure = plot(5, PLOT_WIDTH, PLOT_HEIGHT, get_data(sp, SELECTED, 5))

    doc.add_root(figure)
Exemplo n.º 9
0
def plot_shape(data,
               source,
               max_rank,
               trim_antarctica=False,
               flesh_out_antarctica=False):
    """data from http://www.naturalearthdata.com/"""
    sf = shapefile.Reader("data/{}_{}".format(source, data))
    for i, field in enumerate(sf.fields):
        if 'rank' in field[0]:
            rank_idx = i - 1
    for record, shape in zip(sf.records(), sf.shapes()):
        if record[rank_idx] <= max_rank:
            if trim_antarctica:
                if shape.points[0][
                        1] < -60:  #if it is Antarctica (this will have a few false positives, but that's fine)
                    shape.points = trim_edges(shape.points)
            elif flesh_out_antarctica:
                if shape.points[0][1] < -60:
                    shape.points = lengthen_edges(shape.points)

            plot(shape.points, midx=shape.parts, close=False, fourmat='xd')
Exemplo n.º 10
0
    def update_period(attr, old, new):
        """Update selected period."""
        spinner.css_classes = ['loader-spinner']
        overlay.css_classes = ['loader-overlay']

        _data = get_data(sp, selected, period_selector.active)

        layout.children[2] = plot(period_selector.active, plot_width,
                                  plot_height, _data)

        spinner.css_classes = []
        overlay.css_classes = []
def plot_pole_indicatrix(north,
                         r,
                         res,
                         ctr_meridian=0,
                         side_res=1,
                         pole_res=1):
    if north:
        pp, pr = math.pi / 2, math.pi / 2 - r
    else:
        pp, pr = -math.pi / 2, -math.pi / 2 + r

    points = []
    for i in range(side_res):
        points.append((pp + (pr - pp) / side_res * i, ctr_meridian - math.pi))
    for x in range(-180, 181, 360 // res):
        points.append((pr, ctr_meridian + math.radians(x)))
    for i in range(side_res):
        points.append(
            (pr + (pp - pr) / side_res * (i + 1), ctr_meridian + math.pi))
    for x in range(180, -181, -360 // pole_res):
        points.append((pp, ctr_meridian + math.radians(x)))
    plot(points)
Exemplo n.º 12
0
    def update_symbol_list(attr, old, new):
        """Update selected symobls."""
        spinner.css_classes = ['loader-spinner']
        overlay.css_classes = ['loader-overlay']

        if symbol_selector.value is None:
            return
        if symbol_selector.value in selected:
            selected.remove(symbol_selector.value)
        else:
            selected.append(symbol_selector.value)
        if selected is None:
            _data = None
        else:
            _data = get_data(sp, selected, period_selector.active)

        layout.children[2] = plot(period_selector.active, plot_width,
                                  plot_height, _data)

        symbol_selector.value = None
        spinner.css_classes = []
        overlay.css_classes = []
Exemplo n.º 13
0

def test():
    with pygmsh.occ.Geometry() as geom:
        container = geom.add_rectangle([0.0, 0.0, 0.0], 10.0, 10.0)

        letter_i = geom.add_rectangle([2.0, 2.0, 0.0], 1.0, 4.5)
        i_dot = geom.add_disk([2.5, 7.5, 0.0], 0.6)

        disk1 = geom.add_disk([6.25, 4.5, 0.0], 2.5)
        disk2 = geom.add_disk([6.25, 4.5, 0.0], 1.5)
        letter_o = geom.boolean_difference(disk1, disk2)

        geom.boolean_difference(
            container, geom.boolean_union([letter_i, i_dot, letter_o]))

        mesh = geom.generate_mesh()

    ref = 81.9131851877
    assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
    return mesh


if __name__ == "__main__":
    # import meshio
    # meshio.write_points_cells('m.vtu', *test())
    from helpers import plot

    mesh = test()
    plot("meshio_logo.png", mesh.points, mesh.get_cells_type("triangle"))
Exemplo n.º 14
0
    rect3 = geom.add_rectangle([10.0, 30.0, 0.0], 10.0, 1.0)
    rect4 = geom.add_rectangle([20.0, 9.0, 0.0], 10.0, 1.0)

    r1 = geom.add_rectangle([9.0, 0.0, 0.0], 21.0, 20.5, corner_radius=8.0)
    r2 = geom.add_rectangle([10.0, 00.0, 0.0], 20.0, 19.5, corner_radius=7.0)
    diff1 = geom.boolean_difference([r1], [r2])
    r22 = geom.add_rectangle([9.0, 10.0, 0.0], 11.0, 11.0)
    inter1 = geom.boolean_intersection([diff1, r22])

    r3 = geom.add_rectangle([10.0, 19.5, 0.0], 21.0, 21.0, corner_radius=8.0)
    r4 = geom.add_rectangle([10.0, 20.5, 0.0], 20.0, 20.0, corner_radius=7.0)
    diff2 = geom.boolean_difference([r3], [r4])
    r33 = geom.add_rectangle([20.0, 19.0, 0.0], 11.0, 11.0)
    inter2 = geom.boolean_intersection([diff2, r33])

    geom.boolean_difference([rect1, rect2],
                            [disk1, disk2, rect3, rect4, inter1, inter2])

    points, cells, _, _, _ = pygmsh.generate_mesh(geom)
    ref = 1082.4470502181903
    assert abs(compute_volume(points, cells) - ref) < 1.0e-2 * ref
    return points, cells


if __name__ == '__main__':
    from helpers import plot
    plot('logo.png', *test())
    # import meshio
    # meshio.write('logo.vtu', *test())
Exemplo n.º 15
0
import copy

from elliptic_curve import EllipticCurve
from helpers import plot
from point import Point

C = EllipticCurve(a=-2, b=4)
print(C)

# case where P + Q + r = 0 ( tree points on curve)
P = Point(C, 3, 5)
P_copy = copy.copy(P)
Q = Point(C, -2, 0)
U = P+Q
print(U)
plot(C, P_copy, Q, U)

# case where P + P + 0 = 0 (only one point on curve)
P = Point(C, -2, 0)
P_copy = copy.copy(P)
Q = Point(C, -2, 0)
U = P+Q
print(U)
plot(C, P_copy, Q, U)

# case where P + Q + 0 = 0 (vertical line)
P = Point(C, 0, 2)
P_copy = copy.copy(P)
Q = Point(C, 0, -2)
U = P+Q
print(U)
Exemplo n.º 16
0
def main():
	spectrum = getSquareWaveSignal(1100).make_wave().make_spectrum()
	helpers.plot(spectrum)
Exemplo n.º 17
0
print(f"J={J}")


# L2 regularisation
#J += 1e4*reg
#print(f"reg={1e4*reg}")

# l2 regularisation
reg = 0
for W in [W_1, W_2, b_1, W_3_1, W_3_2, b_2]:
    reg += 1e4*assemble(W**2*dx)
J += reg
print(f"reg={reg}")

Jhat = ReducedFunctional(J, [Control(W_1), Control(b_1), Control(W_2), Control(b_2), Control(W_3_1), Control(W_3_2)])
C_up_eps_1 = Control(up_eps_1)
C_up_eps_2 = Control(up_eps_2)

set_log_level(LogLevel.ERROR)

minimize(Jhat, tol=1e-200, options={"disp": True, "gtol": 1e-12, "maxiter": 20})

#print("|U - d| = ", assemble(inner(C_up.tape_value() - up_stab, C_up.tape_value() - up_stab)*dx)**0.5)

u_nn, p_nn = C_up_eps_1.tape_value().split(deepcopy=True)
plot(u_nn, "out/u_eps_1_nn.png")
plot(p_nn, "out/p_eps_1_nn.png")
u_nn, p_nn = C_up_eps_2.tape_value().split(deepcopy=True)
plot(u_nn, "out/u_eps_2_nn.png")
plot(p_nn, "out/p_eps_2_nn.png")
Exemplo n.º 18
0
def train(u_stab, element):
    mesh = u_stab.function_space().mesh()
    n = FacetNormal(mesh)

    W = FunctionSpace(mesh, element)
    # Now solve the Poisson with an inconsistent element,
    # but with the NN as a source term

    # Define a neural network that will be added as a source term to the Poisson eqn
    # We pass into the network the mesh size :_
    R = VectorFunctionSpace(mesh, "R", 0, dim=50)
    R2 = FunctionSpace(mesh, "R", 0)
    W_1 = [Function(R)] * 5
    W_2 = Function(R)
    b_1 = Function(R)
    b_2 = Function(R2)

    eps = 1e1
    for w in W_1:
        w.vector()[:] = eps * rand(R.dim())
    W_2.vector()[:] = eps * rand(R.dim())
    b_1.vector()[:] = eps * rand(R.dim())
    b_2.vector()[:] = eps * rand(R2.dim())

    def nn(u, v):

        inp = as_vector(
            [avg(u), jump(u), *grad(avg(u)), *grad(jump(u)), *n('+')])

        def sigma_(vec, func=ufl.tanh):
            v = [func(vec[i]) for i in range(vec.ufl_shape[0])]
            return ufl.as_vector(v)

        relu = lambda vec: conditional(ufl.gt(vec, 0), vec, (ufl.exp(vec) - 1))
        sigma = lambda vec: sigma_(vec, func=relu)

        nn = dot(W_2, sigma(ufl.transpose(as_vector(W_1)) * inp + b_1)) + b_2

        return inner(nn, jump(v) + avg(v)) * dS, inner(nn, nn) * dS

    # Now solve the Stokes-NN forward problem
    u, reg = poisson(W, nn)
    plot(u, "out/u_nn0.png")

    J = assemble((u - u_stab)**2 * dx)
    print(f"J={J}")

    # L2 regularisation
    #J += 1e4*reg
    #print(f"reg={1e4*reg}")

    # l2 regularisation
    reg = 0
    for W in [*W_1, W_2, b_1, b_2]:
        reg += 1e4 * assemble(W**2 * dx)
    J += reg
    print(f"reg={reg}")

    ctrls = [Control(W) for W in W_1]
    ctrls += [Control(b_1), Control(W_2), Control(b_2)]

    Jhat = ReducedFunctional(J, ctrls)
    C_u = Control(u)

    set_log_level(LogLevel.ERROR)

    minimize(Jhat,
             tol=1e-200,
             options={
                 "disp": True,
                 "gtol": 1e-12,
                 "maxiter": 20
             })

    print(
        "|U - d| = ",
        assemble(
            inner(C_u.tape_value() - u_stab,
                  C_u.tape_value() - u_stab) * dx)**0.5)

    u_nn = C_u.tape_value()
    plot(u_nn, "out/u_nn.png")

    return nn
Exemplo n.º 19
0
    #solve(F == 0, up, bcs, solver_parameters={"nonlinear_solver": "snes", "snes_solver": {"line_search": "bt", "linear_solver": "lu", "report": False}},  # [basic,bt,cp,l2,nleqerr]
    #              form_compiler_parameters={"optimize": True})

    if nn:
        return up, assemble(reg)
    else:
        return up


if __name__ == "__main__":
    mesh = UnitSquareMesh(16, 16, 'crossed')

    stable = [
        VectorElement('Lagrange', triangle, 2),
        FiniteElement('Lagrange', triangle, 1)
    ]
    W = FunctionSpace(mesh, MixedElement(stable))

    up = stokes(W)

    # Add noise
    eps_noise = 0
    up.vector()[:] += eps_noise * rand(W.dim())

    u_stab, p_stab = up.split(deepcopy=True)
    plot(u_stab, "out/u_stab.png")
    plot(p_stab, "out/p_stab.png")

    with HDF5File(MPI.comm_world, "out/up_stab.h5", "w") as xdmf:
        xdmf.write(up, "up")
def plot_indicatrix(phi0, lam0, r, res):
    points = []
    for l in range(0, 360, 360 // res):
        points.append(obliquify(math.pi / 2 - r, math.radians(l), phi0, lam0))
    plot(points)
def plot_orthodrome(phi0, lam0, tht0):
	points = []
	for p in range(-90, 91):
		points.append(obliquify(math.radians(p), tht0, phi0, lam0))
	plot(points, close=False)
Exemplo n.º 22
0
def periodic_signal_spectrum(start=1.9, duration=4.8):
    spectrum = helpers.getSpectrum(start, duration, low_pass=100, high_pass=90, input_file="raw-epdf.wav")
    helpers.plot(spectrum)
Exemplo n.º 23
0
def periodic_signal_example(start=1.9, duration=4.8):
	filteredSignal = helpers.getSignal(start, duration, low_pass=100, high_pass=90, input_file="raw-epdf.wav")
	helpers.plot(filteredSignal)
Exemplo n.º 24
0
@pytest.mark.skipif(pygmsh.get_gmsh_major_version() < 3,
                    reason="requires Gmsh >= 3")
def test():
    geom = pygmsh.opencascade.Geometry(characteristic_length_min=0.5,
                                       characteristic_length_max=0.5)

    container = geom.add_rectangle([0.0, 0.0, 0.0], 10.0, 10.0)

    letter_i = geom.add_rectangle([2.0, 2.0, 0.0], 1.0, 4.5)
    i_dot = geom.add_disk([2.5, 7.5, 0.0], 0.6)

    disk1 = geom.add_disk([6.25, 4.5, 0.0], 2.5)
    disk2 = geom.add_disk([6.25, 4.5, 0.0], 1.5)
    letter_o = geom.boolean_difference([disk1], [disk2])

    geom.boolean_difference([container], [letter_i, i_dot, letter_o])

    mesh = pygmsh.generate_mesh(geom)
    ref = 81.9131851877
    assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
    return mesh


if __name__ == "__main__":
    # import meshio
    # meshio.write_points_cells('m.vtu', *test())
    from helpers import plot

    plot("meshio_logo.png", test())
Exemplo n.º 25
0
def create_plot(doc):
    """Creat a bokeh plot."""
    # create a plot and style its properties
    # doc = curdoc()
    doc.theme = Theme(filename=join(dirname(__file__), 'theme.yaml'))
    doc.title = 'Sample bokeh plot'
    sp = StockPrices()

    plot_width = 600
    plot_height = 600

    # elements
    symbol_selector = AutocompleteInput(completions=list(sp.get_symbols()),
                                        width=150)
    period_selector = RadioButtonGroup(labels=[
        "Today" if datetime.today().weekday() < 5 else "Friday", "5 days",
        "1 month", "6 months", "1 year", "5 years"
    ],
                                       active=5,
                                       width=400)
    selected = ['GOOGL', 'AMZN']
    spinner = Div(text='')
    overlay = Div(text='')
    layout = column(Div(text='<header><h1>Stock Closing Prices</h1></header>',
                        width=plot_width),
                    row(column(
                        widgetbox(Div(text='<h3>Period</h3>'),
                                  period_selector,
                                  width=400)),
                        column(
                            widgetbox(Div(text='<h3>Symbols</h3>'),
                                      symbol_selector,
                                      width=plot_width - 400)),
                        height=95),
                    plot(period_selector.active, plot_width, plot_height,
                         get_data(sp, selected, period_selector.active)),
                    spinner,
                    overlay,
                    width=plot_width + 20,
                    height=plot_height + 120,
                    sizing_mode='fixed')
    # layout.css_classes = ['wrapper']

    doc.add_root(layout)

    # Set up callbacks
    # symbol selector
    def update_symbol_list(attr, old, new):
        """Update selected symobls."""
        spinner.css_classes = ['loader-spinner']
        overlay.css_classes = ['loader-overlay']

        if symbol_selector.value is None:
            return
        if symbol_selector.value in selected:
            selected.remove(symbol_selector.value)
        else:
            selected.append(symbol_selector.value)
        if selected is None:
            _data = None
        else:
            _data = get_data(sp, selected, period_selector.active)

        layout.children[2] = plot(period_selector.active, plot_width,
                                  plot_height, _data)

        symbol_selector.value = None
        spinner.css_classes = []
        overlay.css_classes = []

    symbol_selector.on_change('value', update_symbol_list)

    # period selector
    def update_period(attr, old, new):
        """Update selected period."""
        spinner.css_classes = ['loader-spinner']
        overlay.css_classes = ['loader-overlay']

        _data = get_data(sp, selected, period_selector.active)

        layout.children[2] = plot(period_selector.active, plot_width,
                                  plot_height, _data)

        spinner.css_classes = []
        overlay.css_classes = []

    period_selector.on_change('active', update_period)
Exemplo n.º 26
0
    if nn:
        Fnn, reg = nn(u, v)
        F += Fnn
    
    solve(F == 0, u, bcs)
    
    if nn:
        return u, assemble(reg)
    else:
        return u



if __name__== "__main__":
    mesh = UnitIntervalMesh(16)

    stable = FiniteElement('Lagrange', interval, 1)
    W = FunctionSpace(mesh, stable)

    u = poisson(W)

    # Add noise
    eps_noise = 0
    u.vector()[:] += eps_noise*rand(W.dim())

    plot(u, "out/u_stab.png")

    with HDF5File(MPI.comm_world, "out/u_stab.h5", "w") as xdmf:
        xdmf.write(u, "u")
Exemplo n.º 27
0
def main():
	frequency = 10
	for i in xrange(3):
		helpers.plot(removeHarmonics(sawToothSignal(freq=frequency), i)[1])
		helpers.plot(getWave(sawToothSignal(freq=frequency)))
Exemplo n.º 28
0
@pytest.mark.skipif(pygmsh.get_gmsh_major_version() < 3, reason="requires Gmsh >= 3")
def test():
    geom = pygmsh.opencascade.Geometry(
        characteristic_length_min=0.5, characteristic_length_max=0.5
    )

    container = geom.add_rectangle([0.0, 0.0, 0.0], 10.0, 10.0)

    letter_i = geom.add_rectangle([2.0, 2.0, 0.0], 1.0, 4.5)
    i_dot = geom.add_disk([2.5, 7.5, 0.0], 0.6)

    disk1 = geom.add_disk([6.25, 4.5, 0.0], 2.5)
    disk2 = geom.add_disk([6.25, 4.5, 0.0], 1.5)
    letter_o = geom.boolean_difference([disk1], [disk2])

    geom.boolean_difference([container], [letter_i, i_dot, letter_o])

    mesh = pygmsh.generate_mesh(geom)
    ref = 81.9131851877
    assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
    return mesh


if __name__ == "__main__":
    # import meshio
    # meshio.write_points_cells('m.vtu', *test())
    from helpers import plot

    plot("meshio_logo.png", test())
Exemplo n.º 29
0
    rect3 = geom.add_rectangle([10.0, 30.0, 0.0], 10.0, 1.0)
    rect4 = geom.add_rectangle([20.0, 9.0, 0.0], 10.0, 1.0)

    r1 = geom.add_rectangle([9.0, 0.0, 0.0], 21.0, 20.5, corner_radius=8.0)
    r2 = geom.add_rectangle([10.0, 00.0, 0.0], 20.0, 19.5, corner_radius=7.0)
    diff1 = geom.boolean_difference([r1], [r2])
    r22 = geom.add_rectangle([9.0, 10.0, 0.0], 11.0, 11.0)
    inter1 = geom.boolean_intersection([diff1, r22])

    r3 = geom.add_rectangle([10.0, 19.5, 0.0], 21.0, 21.0, corner_radius=8.0)
    r4 = geom.add_rectangle([10.0, 20.5, 0.0], 20.0, 20.0, corner_radius=7.0)
    diff2 = geom.boolean_difference([r3], [r4])
    r33 = geom.add_rectangle([20.0, 19.0, 0.0], 11.0, 11.0)
    inter2 = geom.boolean_intersection([diff2, r33])

    geom.boolean_difference([rect1, rect2],
                            [disk1, disk2, rect3, rect4, inter1, inter2])

    points, cells, _, _, _ = pygmsh.generate_mesh(geom)
    ref = 1082.4470502181903
    assert abs(compute_volume(points, cells) - ref) < 1.0e-2 * ref
    return points, cells


if __name__ == "__main__":
    from helpers import plot

    plot("logo.png", *test())
    # import meshio
    # meshio.write_points_cells('logo.vtu', *test())
Exemplo n.º 30
0
def train_ad(u_stab, V, alpha):
    mesh = V.mesh()

    # Define a neural network that will be added as a source term to the Stokes eqn
    R = VectorFunctionSpace(mesh, "R", 0, dim=50)
    W_1, W_2, b_1, b_2, W_3_1, W_3_2 = Function(R), Function(R), Function(
        R), Function(R), Function(R), Function(R)
    W_3 = as_vector([W_3_1, W_3_2])
    R2 = VectorFunctionSpace(mesh, "R", 0, dim=2)

    eps = 1e1
    W_1.vector()[:] = eps * rand(R.dim())
    W_2.vector()[:] = eps * rand(R.dim())
    W_3[0].vector()[:] = eps * rand(R.dim())
    W_3[1].vector()[:] = eps * rand(R.dim())
    b_1.vector()[:] = eps * rand(R.dim())
    b_2.vector()[:] = eps * rand(b_2.function_space().dim())

    def nn(u, v):
        #return inner(grad(p), grad(q)) * dx

        def sigma_(vec, func=ufl.tanh):
            v = [func(vec[i]) for i in range(vec.ufl_shape[0])]
            return ufl.as_vector(v)

        relu = lambda vec: conditional(ufl.gt(vec, 0), vec, (ufl.exp(vec) - 1))
        sigma = lambda vec: sigma_(vec, func=relu)  #lambda x:x)

        #from IPython import embed
        #embed()

        n1 = dot(W_2, sigma(W_1 * u) + b_1)
        n2 = dot(W_3_1, sigma(W_3_2 * u.dx(0)) + b_2)

        return inner(n1, v) * dx + inner(n2, v.dx(0)) * dx, inner(
            n1, n1) * dx + inner(n2, n2) * dx, n1

    # Now solve the Stokes-NN forward problem
    uh, reg = advection_diffusion(V, alpha, nn)
    plot(uh, "out/ad0.png")

    J = assemble((uh - u_stab)**2 * dx(domain=u_stab.function_space().mesh()))
    print(f"J={J}", u_stab.function_space().ufl_element())

    reg = 0
    for W in [W_1, W_2, W_3_1, W_3_2, b_1, b_2]:
        reg += 1E-2 * assemble(W**2 * dx)
    J += reg
    print(f"reg={reg}")

    Jhat = ReducedFunctional(J, [
        Control(W_1),
        Control(b_1),
        Control(b_2),
        Control(W_2),
        Control(W_3_1),
        Control(W_3_2)
    ])
    C_u = Control(uh)

    set_log_level(LogLevel.ERROR)

    minimize(Jhat,
             tol=1e-200,
             options={
                 "disp": True,
                 "gtol": 1e-12,
                 "maxiter": 50
             })

    print(
        "|U - d| = ",
        assemble(
            inner(C_u.tape_value() - u_stab,
                  C_u.tape_value() - u_stab) *
            dx(domain=u_stab.function_space().mesh()))**0.5)

    u_nn = C_u.tape_value()

    df.plot(u_nn, label='learned', marker='o')
    df.plot(interpolate(u_stab, V), label='data alpha {}'.format(alpha))
    df.plot(advection_diffusion(V, alpha=alpha, nn=None), label='no nn')
    plt.legend()
    plt.savefig("out/ad_nn.png")

    return nn
Exemplo n.º 31
0
@pytest.mark.skipif(pygmsh.get_gmsh_major_version() < 3,
                    reason='requires Gmsh >= 3')
def test():
    geom = pygmsh.opencascade.Geometry(
        characteristic_length_min=0.5,
        characteristic_length_max=0.5,
    )

    container = geom.add_rectangle([0.0, 0.0, 0.0], 10.0, 10.0)

    letter_i = geom.add_rectangle([2.0, 2.0, 0.0], 1.0, 4.5)
    i_dot = geom.add_disk([2.5, 7.5, 0.0], 0.6)

    disk1 = geom.add_disk([6.25, 4.5, 0.0], 2.5)
    disk2 = geom.add_disk([6.25, 4.5, 0.0], 1.5)
    letter_o = geom.boolean_difference([disk1], [disk2])

    geom.boolean_difference([container], [letter_i, i_dot, letter_o])

    points, cells, _, _, _ = pygmsh.generate_mesh(geom)
    ref = 81.9131851877
    assert abs(compute_volume(points, cells) - ref) < 1.0e-2 * ref
    return points, cells


if __name__ == '__main__':
    # import meshio
    # meshio.write('m.vtu', *test())
    from helpers import plot
    plot('meshio_logo.png', *test())
Exemplo n.º 32
0
def train_stokes(up_stab, ustab_elm):
    mesh = up_stab.function_space().mesh()

    W = FunctionSpace(mesh, ustab_elm)
    # Now solve the Stokes with an unstable element pair,
    # but with the NN as a source term

    # Define a neural network that will be added as a source term to the Stokes eqn
    R = VectorFunctionSpace(mesh, "R", 0, dim=50)
    W_1, W_2, b_1, W_3_1, W_3_2 = Function(R), Function(R), Function(
        R), Function(R), Function(R)
    W_3 = as_vector([W_3_1, W_3_2])
    R2 = VectorFunctionSpace(mesh, "R", 0, dim=2)
    b_2 = Function(R2)

    eps = 1e1
    W_1.vector()[:] = eps * rand(R.dim())
    W_2.vector()[:] = eps * rand(R.dim())
    W_3[0].vector()[:] = eps * rand(R.dim())
    W_3[1].vector()[:] = eps * rand(R.dim())
    b_1.vector()[:] = eps * rand(R.dim())
    b_2.vector()[:] = eps * rand(R2.dim())

    def nn(u, p, v, q):
        #return inner(grad(p), grad(q)) * dx

        def sigma_(vec, func=ufl.tanh):
            v = [func(vec[i]) for i in range(vec.ufl_shape[0])]
            return ufl.as_vector(v)

        relu = lambda vec: conditional(ufl.gt(vec, 0), vec, (ufl.exp(vec) - 1))
        sigma = lambda vec: sigma_(vec, func=relu)  #lambda x:x)

        nn_p = dot(
            W_3,
            sigma(ufl.transpose(as_vector([W_1, W_2])) * grad(p) + b_1)) + b_2

        #nn_q = dot(W_3, sigma(ufl.transpose(as_vector([W_1, W_2])) * grad(q) + b_1)) + b_2

        return inner(nn_p, grad(q)) * dx, inner(nn_p, nn_p) * dx, nn_p

    # Now solve the Stokes-NN forward problem
    up, reg = stokes(W, nn)
    u_nn, p_nn = up.split(deepcopy=True)
    plot(u_nn, "out/u_nn0.png")
    plot(p_nn, "out/p_nn0.png")

    J = assemble((up - up_stab)**2 * dx)
    print(f"J={J}")

    # L2 regularisation
    #J += 1e4*reg
    #print(f"reg={1e4*reg}")

    # l2 regularisation
    reg = 0
    for W in [W_1, W_2, b_1, W_3_1, W_3_2, b_2]:
        reg += 1e4 * assemble(W**2 * dx)
    J += reg
    print(f"reg={reg}")

    Jhat = ReducedFunctional(J, [
        Control(W_1),
        Control(b_1),
        Control(W_2),
        Control(b_2),
        Control(W_3_1),
        Control(W_3_2)
    ])
    C_up = Control(up)

    set_log_level(LogLevel.ERROR)

    minimize(Jhat,
             tol=1e-200,
             options={
                 "disp": True,
                 "gtol": 1e-12,
                 "maxiter": 20
             })

    print(
        "|U - d| = ",
        assemble(
            inner(C_up.tape_value() - up_stab,
                  C_up.tape_value() - up_stab) * dx)**0.5)

    u_nn, p_nn = C_up.tape_value().split(deepcopy=True)
    plot(u_nn, "out/u_nn.png")
    plot(p_nn, "out/p_nn.png")

    return nn