Exemplo n.º 1
0
    def test_attribute_vertex_list(self):
        tree, altitudes = TestAttributes.get_test_tree()

        res = hg.attribute_vertex_list(tree)
        ref = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [0, 1], [2, 5],
               [3, 4], [6, 7], [6, 7, 8], [0, 1, 2, 5], [0, 1, 2, 5, 6, 7, 8],
               [0, 1, 2, 5, 6, 7, 8, 3, 4]]
        self.assertTrue(len(ref) == len(res))
        for i in range(len(ref)):
            self.assertTrue(set(ref[i]) == set(res[i]))
Exemplo n.º 2
0
    def test_attribute_gaussian_region_weights_model_scalar(self):
        tree, altitudes = TestAttributes.get_test_tree()
        vertex_list = hg.attribute_vertex_list(tree)

        np.random.seed(42)
        vertex_weights = np.random.rand(tree.num_leaves())
        mean, variance = hg.attribute_gaussian_region_weights_model(tree, vertex_weights)

        for i in tree.leaves_to_root_iterator():
            m = np.mean(vertex_weights[vertex_list[i]])
            v = np.var(vertex_weights[vertex_list[i]])
            self.assertTrue(np.isclose(m, mean[i]))
            self.assertTrue(np.isclose(v, variance[i]))
Exemplo n.º 3
0
    def test_attribute_gaussian_region_weights_model_vectorial(self):
        tree, altitudes = TestAttributes.get_test_tree()
        vertex_list = hg.attribute_vertex_list(tree)

        np.random.seed(42)
        vertex_weights = np.random.rand(tree.num_leaves(), 3)
        mean, variance = hg.attribute_gaussian_region_weights_model(tree, vertex_weights)

        for i in tree.leaves_to_root_iterator(include_leaves=True):
            m = np.mean(vertex_weights[vertex_list[i]], 0)

            self.assertTrue(np.allclose(m, mean[i, :]))

            # numpy wrongly interprets a single observation with several variables as
            # multiple observations of a single variables
            if i >= tree.num_leaves():
                v = np.cov(vertex_weights[vertex_list[i]], rowvar=False, bias=True)
                self.assertTrue(np.allclose(v, variance[i, ...]))
            else:
                v = np.zeros_like(variance[i, ...])
                self.assertTrue(np.allclose(v, variance[i, ...]))