Exemplo n.º 1
0
def get_chids(cubes: list) -> tuple:

    cid_a = hirise.get_ChannelID_fromfile(cubes[0])

    if len(cubes) == 2:
        cid_b = hirise.get_ChannelID_fromfile(cubes[1])
        if hirise.CCDID(cid_a) == hirise.CCDID(cid_b):
            return (cid_a, cid_b)
        else:
            raise ValueError("These do not appear to be channels "
                             f"from the same CCD:\n{cubes[0]}: "
                             f"{cid_a} and\n{cubes[1]}: {cid_b}")
    else:
        return (cid_a, )
Exemplo n.º 2
0
def calc_snr(
    cub: os.PathLike, gainsinfo: dict, histats: dict, cid=None
) -> float:
    """Calculate the signal to noise ratio."""
    if cid is None:
        cid = hirise.get_ChannelID_fromfile(cub)
    # logger.info(f"{cid}: " + calc_snr.__doc__)

    ccdchan = f"{cid.get_ccd()}_{cid.channel}"

    # gainspvl = pvl.load(str(gainsfile))
    gain = float(gainsinfo["Gains"][ccdchan]["Bin" + str(histats["BINNING"])])

    img_mean = float(histats["IMAGE_MEAN"])
    lis_pixels = float(histats["LOW_SATURATED_PIXELS"])
    buf_mean = float(histats["IMAGE_BUFFER_MEAN"])

    snr = -9999
    r = 90
    # Note from original file about r:
    # 150 e *Changed value to 90 e- 1/31/2012 to bring closer
    # to HIPHOP value for read noise. SM

    if 0 == lis_pixels and img_mean > 0.0 and buf_mean > 0.0:
        s = (img_mean - buf_mean) * gain
        snr = s / math.sqrt(s + r * r)
        logger.info(f"{cid}: Calculation of Signal/Noise Ratio:")
        logger.info(f"{cid}: \tIMAGE_MEAN:        {img_mean}")
        logger.info(f"{cid}: \tIMAGE_BUFFER_MEAN: {buf_mean}")
        logger.info(f"{cid}: \tR (electrons/DN):  {r}")
        logger.info(f"{cid}: \tGain:              {gain}")
        logger.info(f"{cid}: Signal/Noise ratio: {snr}")

    return snr
Exemplo n.º 3
0
 def setUp(self):
     self.cube = imgs[0].with_suffix(".TestHiCal.cub")
     self.pid = hirise.get_ChannelID_fromfile(self.cube)
     self.db = edr.EDR_Stats(imgs[0], self.cube, gains)
     self.binning = int(isis.getkey_k(self.cube, "Instrument", "Summing"))
     self.conf = conf
     # self.conf['HiGainFx'] = pvl.load(str(hgf_conf))['HiGainFx']
     self.conf["NoiseFilter"] = nf_conf["NoiseFilter"]
Exemplo n.º 4
0
def pid_path_w_suffix(in_path: str, template_path: os.PathLike) -> Path:
    """A little extra twist to look for the db file."""
    p = path_w_suffix(in_path, template_path)
    if p.exists():
        return p
    elif in_path.startswith("."):
        pid = hirise.get_ChannelID_fromfile(template_path)
        t_path = Path(template_path)
        if t_path.is_dir():
            d = t_path
        else:
            d = t_path.parent
        pid_path = d / Path(str(pid)).with_suffix(in_path)
        if pid_path.exists():
            return pid_path
        else:
            raise FileNotFoundError(f"Could not find {pid_path}")
    else:
        raise FileNotFoundError(f"Could not find {p}")
Exemplo n.º 5
0
def tdi_bin_check(cube: os.PathLike, histats: dict, cid=None):
    """This function only logs warnings and returns nothing."""

    if cid is None:
        try:
            cid = histats['PRODUCT_ID']
        except KeyError:
            cid = hirise.get_ChannelID_fromfile(cube)

    # TDI and binning check
    if float(histats["IMAGE_MEAN"]) >= 8000:
        logger.warning(
            f"{cid}: "
            f"Channel mean greater than 8000 (TDI or binning too high)."
        )
    elif float(histats["IMAGE_MEAN"]) < 2500:
        tdi = isis.getkey_k(cube, "Instrument", "Tdi")
        if tdi == "32" or tdi == "64":
            logger.warning(f"{cid}: TDI too low.")
    return
Exemplo n.º 6
0
def main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "-o", "--output", required=False, default=".mdr.iof.cub"
    )
    parser.add_argument("-e", "--edr", required=True)
    parser.add_argument(
        "-c",
        "--conf",
        required=False,
        type=argparse.FileType('r'),
        default=pkg_resources.resource_stream(
            __name__,
            'data/hical.pipelines.conf'
        ),
    )
    parser.add_argument("mdr", metavar="MDR_file")
    parser.add_argument(
        "-l",
        "--log",
        required=False,
        default="WARNING",
        help="The log level to show for this program, can "
        "be a named log level or a numerical level.",
    )
    parser.add_argument(
        "-k",
        "--keep",
        required=False,
        default=False,
        action="store_true",
        help="Normally, the program will clean up any "
        "intermediary files, but if this option is given, it "
        "won't.",
    )

    args = parser.parse_args()

    util.set_logger(args.verbose, args.logfile, args.log)

    edr_path = Path(args.edr)
    mdr_path = Path(args.mdr)

    to_del = isis.PathSet()

    h2i_path = to_del.add(edr_path.with_suffix(".hi2isis.cub"))

    out_path = util.path_w_suffix(args.output, edr_path)

    # The first thing Alan's program did was to crop the image down to only the
    # 'imaging' parts.  We're not doing that so the resultant file has a
    # geometry similar to what comes out of ISIS hical.

    # Convert the EDR to a cube file
    isis.hi2isis(edr_path, to=h2i_path)

    # Convert Alan's MDR to a cube file
    mdr_cub_path = to_del.add(mdr_path.with_suffix(".alan.cub"))
    logger.info(f"Running gdal_translate {mdr_path} -of ISIS3 {mdr_cub_path}")
    gdal.Translate(str(mdr_cub_path), str(mdr_path), format="ISIS3")

    h2i_s = int(isis.getkey_k(h2i_path, "Dimensions", "Samples"))
    h2i_l = int(isis.getkey_k(h2i_path, "Dimensions", "Lines"))
    mdr_s = int(isis.getkey_k(mdr_cub_path, "Dimensions", "Samples"))
    mdr_l = int(isis.getkey_k(mdr_cub_path, "Dimensions", "Lines"))

    if h2i_s != mdr_s:
        label = pvl.load(str(h2i_path))
        hirise_cal_info = get_one(
            label, "Table", "HiRISE Calibration Ancillary"
        )

        buffer_pixels = get_one(hirise_cal_info, "Field", "BufferPixels")[
            "Size"
        ]
        dark_pixels = get_one(hirise_cal_info, "Field", "DarkPixels")["Size"]
        rev_mask_tdi_lines = hirise_cal_info["Records"]

        if h2i_s + buffer_pixels + dark_pixels == mdr_s:
            logger.info(
                f"The file {mdr_cub_path} has "
                f"{buffer_pixels + dark_pixels} more sample pixels "
                f"than {h2i_path}, assuming those are dark and "
                "buffer pixels and will crop accordingly."
            )
            if h2i_l + rev_mask_tdi_lines != mdr_l:
                logger.critical(
                    'Even assuming this is a "full" channel '
                    "image, this has the wrong number of lines. "
                    f"{mdr_cub_path} should have "
                    f"{h2i_l + rev_mask_tdi_lines}, but "
                    f"has {mdr_l} lines. Exiting"
                )
                sys.exit()
            else:
                crop_path = to_del.add(mdr_cub_path.with_suffix(".crop.cub"))
                # We want to start with the next pixel (+1) after the cal
                # pixels.
                isis.crop(
                    mdr_cub_path,
                    to=crop_path,
                    sample=buffer_pixels + 1,
                    nsamples=h2i_s,
                    line=rev_mask_tdi_lines + 1,
                )
                mdr_cub_path = crop_path
                mdr_l = int(isis.getkey_k(mdr_cub_path, "Dimensions", "Lines"))

        else:
            logger.critical(
                f"The number of samples in {h2i_path} ({h2i_s}) "
                f"and {mdr_cub_path} ({mdr_s}) are different. "
                "Exiting."
            )
            sys.exit()

    if h2i_l != mdr_l:
        logger.critical(
            f"The number of lines in {h2i_path} ({h2i_l}) "
            f"and {mdr_cub_path} ({mdr_l}) are different. "
            "Exiting."
        )
        sys.exit()

    # Convert the EDR to the right bit type for post-HiCal Pipeline:
    h2i_16b_p = to_del.add(h2i_path.with_suffix(".16bit.cub"))
    isis.bit2bit(
        h2i_path,
        to=h2i_16b_p,
        bit="16bit",
        clip="minmax",
        minval=0,
        maxval=1.5,
    )
    shutil.copyfile(h2i_16b_p, out_path)

    # If it is a channel 1 file, Alan mirrored it so that he could process
    # the two channels in an identical way (which we also took advantage
    # of above if the buffer and dark pixels were included), so we need to
    # mirror it back.
    cid = hirise.get_ChannelID_fromfile(h2i_16b_p)
    if cid.channel == "1":
        mirror_path = to_del.add(mdr_cub_path.with_suffix(".mirror.cub"))
        isis.mirror(mdr_cub_path, to=mirror_path)
        mdr_cub_path = mirror_path

    # Is the MDR in DN or I/F?
    maximum_pxl = float(
        pvl.loads(isis.stats(mdr_cub_path).stdout)["Results"]["Maximum"]
    )
    if maximum_pxl < 1.5:
        logger.info("MDR is already in I/F units.")
        mdr_16b_p = to_del.add(mdr_cub_path.with_suffix(".16bit.cub"))
        isis.bit2bit(
            mdr_cub_path,
            to=mdr_16b_p,
            bit="16bit",
            clip="minmax",
            minval=0,
            maxval=1.5,
        )
        isis.handmos(mdr_16b_p, mosaic=out_path)
    else:
        logger.info("MDR is in DN units and will be converted to I/F.")

        fpa_t = statistics.mean(
            [
                float(
                    isis.getkey_k(
                        h2i_16b_p, "Instrument", "FpaPositiveYTemperature"
                    )
                ),
                float(
                    isis.getkey_k(
                        h2i_16b_p, "Instrument", "FpaNegativeYTemperature"
                    )
                ),
            ]
        )
        print(f"fpa_t {fpa_t}")

        conf = pvl.load(args.conf)

        tdg = t_dep_gain(get_one(conf["Hical"], "Profile", cid.ccdname), fpa_t)
        suncorr = solar_correction()
        sclk = isis.getkey_k(
            h2i_16b_p, "Instrument", "SpacecraftClockStartCount"
        )
        target = isis.getkey_k(h2i_16b_p, "Instrument", "TargetName")
        suncorr = solar_correction(sunDistanceAU(sclk, target))
        sed = float(
            isis.getkey_k(h2i_16b_p, "Instrument", "LineExposureDuration")
        )
        zbin = get_one(conf["Hical"], "Profile", "GainUnitConversion")[
            "GainUnitConversionBinFactor"
        ]

        # The 'ziof' name is from the ISIS HiCal/GainUnitConversion.h, it is a
        # divisor in the calibration equation.
        print(f"zbin {zbin}")
        print(f"tdg {tdg}")
        print(f"sed {sed}")
        print(f"suncorr {suncorr}")
        ziof = zbin * tdg * sed * 1e-6 * suncorr
        eqn = f"\(F1 / {ziof})"  # noqa W605

        mdriof_p = to_del.add(mdr_cub_path.with_suffix(".iof.cub"))
        to_s = "{}+SignedWord+{}:{}".format(mdriof_p, 0, 1.5)
        isis.fx(f1=mdr_cub_path, to=to_s, equ=eqn)

        isis.handmos(mdriof_p, mosaic=out_path)

    if not args.keep:
        to_del.unlink()
Exemplo n.º 7
0
def EDR_Stats(
    img: os.PathLike,
    out_path: os.PathLike,
    gainsinfo: dict,
    histmin=0.01,
    histmax=99.99,
    keep=False,
) -> dict:
    cid = hirise.get_ChannelID_fromfile(img)

    logger.info(f"{cid}: EDR_Stats start: {img}")
    try:
        logger.info(
            f"{cid}: The LUT for this file is: " + str(check_lut(img))
        )
    except KeyError as err:
        logger.error(
            f"{cid}: The LUT header area is either corrupted or has a gap."
        )
        raise err

    # Convert to .cub
    isis.hi2isis(img, to=out_path)

    histat_complete = isis.histat(
        out_path,
        useoffsets=True,
        leftimage=0,
        rightimage=1,
        leftcalbuffer=3,
        rightcalbuffer=1,
        leftcaldark=3,
        rightcaldark=1,
        leftbuffer=3,
        rightbuffer=1,
        leftdark=3,
        rightdark=1,
    )
    histats = parse_histat(histat_complete.stdout)

    # Get some info from the new cube:
    histats["PRODUCT_ID"] = isis.getkey_k(out_path, "Archive", "ProductId")
    histats["IMAGE_LINES"] = int(
        isis.getkey_k(out_path, "Dimensions", "Lines")
    )
    histats["LINE_SAMPLES"] = int(
        isis.getkey_k(out_path, "Dimensions", "Samples")
    )
    histats["BINNING"] = int(isis.getkey_k(out_path, "Instrument", "Summing"))

    histats["STD_DN_LEVELS"] = get_dncnt(out_path, histmin, histmax, keep=keep)
    histats["IMAGE_SIGNAL_TO_NOISE_RATIO"] = calc_snr(
        out_path, gainsinfo, histats, cid=cid
    )
    histats["GAP_PIXELS_PERCENT"] = (
        histats["GAP_PIXELS"]
        / (int(histats["IMAGE_LINES"]) * int(histats["LINE_SAMPLES"]))
    ) * 100.0

    tdi_bin_check(out_path, histats, cid=cid)
    lut_check(out_path, histats)

    logger.info(f"{cid}: EDR_Stats done: {out_path}")
    return histats
Exemplo n.º 8
0
 def setUp(self):
     self.cube = imgs[0].with_suffix(".TestHiCal_TestNeedISISCube.cub")
     isis.hi2isis(imgs[0], to=self.cube)
     self.pid = hirise.get_ChannelID_fromfile(self.cube)
     self.binning = int(isis.getkey_k(self.cube, "Instrument", "Summing"))
Exemplo n.º 9
0
 def __init__(self, pathlike, db=None):
     self.path = Path(pathlike)
     self.nextpath = self.path
     super().__init__(hirise.get_ChannelID_fromfile(self.path))
     self.db = db
Exemplo n.º 10
0
def fix(in_path: os.PathLike, out_path: os.PathLike, tolerance=0.4) -> bool:
    """The ISIS cube file at *out_path* will be the result of running lis-fix
    processing of the file at *in-path*, if allowed by *tolerance*.  If the
    *tolerance* setting would result in the application of lis-fix, then
    no file will be created at *out_path* and this function will return
    False.  Otherwise there will be a file there, and this function
    will return True.

    If the fraction of LIS pixels in the Reverse-Clock areas is
    greater than *tolerance*, then all LIS pixels in the rev-clock
    will be converted to a real DN value based on modeling the slope
    of the ramp area.

    If the fraction of LIS pixels in the Buffer Pixel area is greater
    than *tolerance*, this algorithm will attempt to fix those LIS pixels,
    as well.

    If the file at *in_path* isn't an ISIS cube, a ValueError will be raised.

    This function anticipates a HiRISE cube that has the following
    table objects in its label: HiRISE Calibration Ancillary,
    HiRISE Calibration Image, HiRISE Ancillary.  If they are not present
    a KeyError will be raised.

    The HiRISE Calibration Ancillary table contains the BufferPixels
    and DarkPixels from either side of the HiRISE Calibration Image.
    The HiRISE Calibration Image table contains the Reverse-Clock,
    Mask, and Ramp Image areas.  The HiRISE Ancillary table contains
    the BufferPixels and DarkPixels from either side of the main
    Image Area.
    """

    in_p = Path(in_path)
    out_p = Path(out_path)
    fixed = False

    label = pvl.load(in_p)
    if "IsisCube" not in label:
        raise ValueError(f"The file at {in_p} is not an ISIS Cube.")

    binning = label["IsisCube"]["Instrument"]["Summing"]
    specialpix = getattr(isis.specialpixels,
                         label["IsisCube"]["Core"]["Pixels"]["Type"])

    # Get Rev-Clock data
    t_name = "HiRISE Calibration Image"
    hci_dict = isis.cube.get_table(in_path, t_name)
    cal_vals = np.array(hci_dict["Calibration"])

    cal_image = np.ma.masked_outside(cal_vals, specialpix.Min, specialpix.Max)

    mask_lines = int(20 / binning)
    ramp_start = 20 + mask_lines

    # Get the average slope of the dark ramp
    hca_dict = isis.cube.get_table(in_path, "HiRISE Calibration Ancillary")
    caldark_vals = np.array(hca_dict["DarkPixels"])
    caldark = np.ma.masked_outside(caldark_vals, specialpix.Min,
                                   specialpix.Max)
    # print(caldark.shape)
    dark_slopes = np.ma.apply_along_axis(get_ramp_slope, 0,
                                         caldark[ramp_start:, 1:])
    # print(dark_slopes.shape)
    # print(dark_slopes)

    # CORRECT FOR MASKED LINES
    # ASSUME SLOPE IS DEFINED BY DARK COLUMNS
    dark_slope_mean = np.mean(dark_slopes)
    logger.info(f"Dark Ramp mean slope: {dark_slope_mean}")
    # FOR # J = 12, SZ(1) - 1 # DO
    # zero.line(j) = zero.line(j) - SL_D * (
    #         ystart(j) + 1 + 20. / info.bin * 103. / 89)
    zero_correction = dark_slope_mean * (20 / binning * 103 / 89)

    revclk_lisfrac = np.ma.count_masked(
        cal_image[:20, :]) / cal_image[:20, :].size
    logger.info(
        f"Fraction of LIS pixels in Reverse-Clock area: {revclk_lisfrac:.2}")
    if revclk_lisfrac > tolerance:
        fixed = True
    else:
        logger.info(
            f"Less than tolerance ({tolerance}), will not fix Reverse-Clock.")

    # Get Buffer Data
    calbuf_vals = np.array(hca_dict["BufferPixels"])
    calbuf = np.ma.masked_outside(calbuf_vals, specialpix.Min, specialpix.Max)

    ha_dict = isis.cube.get_table(in_path, "HiRISE Ancillary")
    dark_vals = np.array(ha_dict["DarkPixels"])
    dark = np.ma.masked_outside(dark_vals, specialpix.Min, specialpix.Max)
    # print(dark.shape)
    buffer_vals = np.array(ha_dict["BufferPixels"])
    buffer = np.ma.masked_outside(buffer_vals, specialpix.Min, specialpix.Max)
    # print(buffer)
    # print(buffer.dtype)
    # print(buffer.shape)

    buffer_lisfrac = np.ma.count_masked(buffer) / buffer.size
    logger.info(f"Fraction of LIS pixels in Buffer area: {buffer_lisfrac:.2}")
    if buffer_lisfrac > tolerance:
        fixed = True
    else:
        logger.info(f"Less than tolerance ({tolerance}), will not fix Buffer.")

    ramp_lisfrac = np.ma.count_masked(
        cal_image[ramp_start:]) / cal_image[ramp_start:].size

    if ramp_lisfrac > tolerance:
        fixed = False
        logger.warning(
            f"The fraction of LIS pixels in the ramp area ({ramp_lisfrac}) "
            f"is greater than the tolerance ({tolerance}), which prevents "
            f"lisfix processing.")

    if fixed:
        shutil.copy(in_path, out_path)
    else:
        return False

    # Fix rev-clock
    if revclk_lisfrac > tolerance:
        rev_model = ramp_rev_clock(
            cal_image[ramp_start:],
            label["IsisCube"]["Instrument"]["ChannelNumber"],
            zero_correction).astype(int)
        # # Mask out all of the rev-clock for testing, so we get wholesale
        # # replacement
        # orig_cal_image = np.ma.copy(cal_image)
        # o_mean = np.ma.mean(orig_cal_image[:20, :], axis=0)
        # y_err_upper = np.ma.max(orig_cal_image[:20, :], axis=0) - o_mean
        # y_err_lower = o_mean - np.ma.min(orig_cal_image[:20, :], axis=0)

        # cal_image[:20, :] = np.ma.masked

        # # Some plotting for debugging:
        # import matplotlib.pyplot as plt
        # plt.plot(o_mean, 'k', label='Mean of Rev-Clock columns')
        # # plt.errorbar(
        # #     np.linspace(0, o_mean.size, num=o_mean.size, endpoint=False),
        # #     o_mean,
        # #     yerr=[y_err_lower, y_err_upper],
        # #     fmt='k',
        # #     label='Mean of Rev-Clock columns'
        # # )
        # for i in range(19):
        #     plt.plot(orig_cal_image[i, :], 'k.')
        # plt.plot(orig_cal_image[19, :], 'k.', label='Original Rev-Clock')
        # plt.plot(rev_model, 'r', label="Fixed")
        # plt.legend(loc='best')
        # plt.show()
        # sys.exit()

        # When we "fix" pixels, we must ensure that we are only fixing the LIS
        # pixels.  The cal_image has all special pixels masked out, so
        # we need to create a new structure that only masks the LIS pixels.
        cal_lismasked = np.ma.masked_equal(cal_vals, specialpix.Lis)
        logger.info("Fixing Reverse-Clock LIS pixels.")
        fixed_cal = np.ma.apply_along_axis(
            fix_rev_clock, 0,
            np.ma.concatenate(
                (cal_lismasked, rev_model.reshape((1, rev_model.size)))))

        logger.info("Writing out Reverse-Clock pixels.")
        hci_dict["Calibration"] = apply_special_pixels(
            fixed_cal, specialpix).data.tolist()
        isis.cube.overwrite_table(out_p, t_name, hci_dict)

    # Fix the buffer area:
    if buffer_lisfrac > tolerance:
        # first_im_line = 19+(20+label["IsisCube"]["Instrument"]["Tdi"])/binning
        sp_frac = np.ma.count_masked(calbuf[:20, :]) / calbuf[:20, :].size
        if sp_frac <= tolerance:
            refr = int(np.ma.median(calbuf[:20, :]))
            logger.info(
                f"Median of first 20 lines of Calibration Buffer Pixels: {refr}"
            )
        else:
            logger.info(f"More than {tolerance:.1%} of the Calibration Buffer "
                        f"Pixels have special pixel values: {sp_frac:.2%}.")
            isp = pvl.loads(isis.catoriglab(
                in_path).stdout)["INSTRUMENT_SETTING_PARAMETERS"]
            adc = label["IsisCube"]["Instrument"]["ADCTimingSetting"]
            if adc == -9999:
                adc = isp["MRO:ADC_TIMING_SETTINGS"]

            cid = get_ChannelID_fromfile(in_path)
            refr = int(
                revclock_model(
                    cid.ccdname + cid.ccdnumber + "_" + cid.channel, binning,
                    label["IsisCube"]["Instrument"]
                    ["FpaPositiveYTemperature"].value, adc))
            logger.info(f"Using a model-based substitute ({refr}).")
            # import hiproc.img as img
            # lut = img.LUT_Table(isp["MRO:LOOKUP_CONVERSION_TABLE"])
            # if refr <= lut.table[1]:
            #     logger.error(f"Using a model-based substitute ({refr}).")
            # else:
            #     logger.error(
            #         f"Model ({refr}) was greater than LUT floor "
            #         f"({lut.table[1]}). Setting to LUT floor."
            #     )
            #     refr = lut.table[1]

        if np.ma.count_masked(dark[:20]) / dark[:20].size <= tolerance:
            refd = int(np.ma.median(dark[:20]))
            logger.info(f"Median of first 20 lines of Dark Pixels: {refd}")
        else:
            refd = int(np.ma.median(fixed_cal[:20, :]))
            logger.info(
                f"More than {tolerance:.1%} of the first 20 lines of "
                f"Dark Pixels have a real "
                f"value: {np.ma.count_masked(dark[:20]) / dark[:20].size} "
                f"Using the rev-clock median ({refd}).")

        model_buffer = dark[:, 2:14] - refd + refr
        # print(model_buffer)
        # print(model_buffer.dtype)
        # print(model_buffer.shape)

        # # Mask out all of the buffer for testing, so we get wholesale
        # # replacement
        # buffer.mask = True

        logger.info("Fixing Buffer pixels.")
        buffer_lismasked = np.ma.masked_equal(buffer_vals, specialpix.Lis)
        fixed_buf = np.ma.apply_along_axis(
            fix_buffer, 1,
            np.ma.concatenate((buffer_lismasked, model_buffer), 1),
            buffer_lismasked.shape[1])
        # print(fixed_buf)
        # print(fixed_buf.dtype)
        # print(fixed_buf.shape)

        ha_dict["BufferPixels"] = apply_special_pixels(
            fixed_buf, specialpix).data.tolist()
        logger.info("Writing out Buffer pixels.")
        isis.cube.overwrite_table(out_p, "HiRISE Ancillary", ha_dict)

    return fixed