def setUpClass(self):
     self.current_path = os.path.dirname(__file__)
     self.data_path = os.path.join(self.current_path, '..', 'data')
     download_test_data(self.data_path)
     self.image_path = os.path.join(self.data_path, 'images')
     self.image_name = '16B0001851_Block_Region_3.jpg'
     self.out_path = os.path.join(self.data_path, 'tissue_mask_test')
     if os.path.exists(self.out_path) and os.path.isdir(self.out_path):
         shutil.rmtree(self.out_path)
     os.makedirs(self.out_path)
Exemplo n.º 2
0
 def setUpClass(self):
     self.current_path = os.path.dirname(__file__)
     self.data_path = os.path.join(self.current_path, '..', 'data')
     download_test_data(self.data_path)
     self.graph_path = os.path.join(self.data_path, 'tissue_graphs')
     self.graph_name = '283_dcis_4.bin'
     self.out_path = os.path.join(self.data_path, 'graph_lrp_test')
     if os.path.exists(self.out_path) and os.path.isdir(self.out_path):
         shutil.rmtree(self.out_path)
     os.makedirs(self.out_path)
Exemplo n.º 3
0
 def setUpClass(self):
     self.current_path = os.path.dirname(__file__)
     self.data_path = os.path.join(self.current_path, '..', 'data')
     download_test_data(self.data_path)
     self.model_fname = os.path.join(self.data_path, 'models',
                                     'tg_model.pt')
     self.graph_path = os.path.join(self.data_path, 'tissue_graphs')
     self.checkpoint_path = os.path.join(self.data_path, 'checkpoints')
     self.graph_name = '283_dcis_4.bin'
     os.makedirs(self.checkpoint_path, exist_ok=True)
Exemplo n.º 4
0
 def setUpClass(self):
     self.current_path = os.path.dirname(__file__)
     self.data_path = os.path.join(self.current_path, '..', 'data')
     download_test_data(self.data_path)
     self.image_path = os.path.join(self.data_path, 'images')
     self.image_name = '283_dcis_4.png'
     self.out_path = os.path.join(self.data_path, 'nuclei_extraction_test')
     if os.path.exists(self.out_path) and os.path.isdir(self.out_path):
         shutil.rmtree(self.out_path)
     os.makedirs(self.out_path)
 def setUpClass(self):
     self.current_path = os.path.dirname(__file__)
     self.data_path = os.path.join(self.current_path, '..', 'data')
     download_test_data(self.data_path)
     self.image_path = os.path.join(self.data_path, 'images')
     self.image_name = '283_dcis_4.png'
     self.nuclei_map_path = os.path.join(self.data_path, 'nuclei_maps')
     self.nuclei_map_name = '283_dcis_4.h5'
     self.annotation_name = '283_dcis_4_annotation.png'
     self.out_path = os.path.join(self.data_path, 'graph_builder_test')
     if os.path.exists(self.out_path) and os.path.isdir(self.out_path):
         shutil.rmtree(self.out_path)
     os.makedirs(self.out_path)
Exemplo n.º 6
0
 def setUpClass(self):
     self.current_path = os.path.dirname(__file__)
     self.data_path = os.path.join(self.current_path, "..", "data")
     download_test_data(self.data_path)
     self.image_path = os.path.join(self.data_path, "images")
     self.image_name = "283_dcis_4.png"
     self.cell_graph_path = os.path.join(self.data_path, "cell_graphs")
     self.graph_name = "283_dcis_4.bin"
     self.tissue_graph_path = os.path.join(self.data_path, "tissue_graphs")
     self.tissue_graph_name = "283_dcis_4.bin"
     self.out_path = os.path.join(self.data_path, "visualization_test")
     if os.path.exists(self.out_path) and os.path.isdir(self.out_path):
         shutil.rmtree(self.out_path)
     os.makedirs(self.out_path)
Exemplo n.º 7
0
        graph = graph[0]
        graph = set_graph_on_cuda(graph) if IS_CUDA else graph

        # b. load corresponding image
        image_path = [
            x for x in image_fnames if graph_name in x.replace('.png', '.bin')
        ][0]
        _, image_name = os.path.split(image_path)
        image = np.array(Image.open(image_path))

        # c. run explainer
        importance_scores, _ = explainer.process(graph)

        # d. visualize and save the output
        node_attrs = {"color": importance_scores}
        canvas = visualizer.process(image, graph, node_attributes=node_attrs)
        canvas.save(os.path.join('output', 'explainer', image_name))


if __name__ == "__main__":

    # 1. download pre-computed images/cell_graph
    download_test_data('output')

    # 2. create output directories
    os.makedirs(os.path.join('output', 'explainer'), exist_ok=True)

    # 3. generate tissue graphs
    explain_cell_graphs(cell_graph_path=os.path.join('output', 'cell_graphs'),
                        image_path=os.path.join('output', 'images'))