Exemplo n.º 1
0
def gen_intraday_volatility_plots(symbol, dates, high, low, close, start_date, end_date, gen_title) :

	(start_idx, end_idx) = get_start_end_idxs(dates, start_date, end_date)
		
	# cut slice
	date_slice = dates[start_idx : end_idx]
	slice_start_date = dates[start_idx]
	slice_end_date = dates[end_idx]
	low_slice = low[start_idx : end_idx]
	high_slice = high[start_idx : end_idx]
	close_slice = close[start_idx : end_idx]
	
	delta = []
	for i in range(len(high_slice)):
		delta.append(float(100 * (high_slice[i] - low_slice[i]) / close_slice[i]) )
	
	# generate matplotlib plot
	x = np.array(date_slice)
	y = np.array(delta)
	fever_fig = plt.figure()
	ax = fever_fig.add_subplot(111)
	ax.plot(x,y)
	# leg = ax.legend(('Model length'), 'upper center', shadow=True)
	
	ax.grid(False)  
	ax.set_ylabel('100 * (High - Low) / Close')

	title = gen_title(symbol, 'Intra-Day Range as a Percentage of Closing Price', slice_start_date, slice_end_date)
	ax.set_title(title)

	# date intervals & markers
	(formatter, locator) = tick_info(slice_start_date, slice_end_date)
	ax.xaxis.set_major_formatter(formatter) 
	ax.xaxis.set_major_locator(locator)
	fever_fig.autofmt_xdate(rotation=90)
	ax.set_xlim([slice_start_date, slice_end_date])
	ax.set_xlabel('Date')
	
	# ------------
	
	h = Histogram(delta)
	left_edge = []
	height = []
	for bin in h.bins:
		left_edge.append(float(bin.floor))
		height.append(h.bin_contrib_perc(bin))
	
	x = np.array(left_edge)
	y = np.array(height)
	
	dist_fig = plt.figure()
	ax = dist_fig.add_subplot(111)
	ax.bar(x, y, width=h.bins[0].range)
	
	ax.set_xlim(h.min, h.max)
	ax.set_ylabel('% of Population')
	ax.set_xlabel('Intra-Day Range i.t.o Close : 100 * (High - Low) / Close')

	title = gen_title(symbol, 'Distribution of Intra-Day Range', slice_start_date, slice_end_date)
	ax.set_title(title)

	reports = []
	reports.append(AnalysisReport(symbol, slice_start_date, slice_end_date, 'Intra-Day Range Fever', '', fever_fig))
	reports.append(AnalysisReport(symbol, slice_start_date, slice_end_date, 'Distribution of Intra-day Range', h.report(date_slice, delta), dist_fig))
	return reports
Exemplo n.º 2
0
def analyse_daily_open_to_close_movement(symbol, dates, openn, close, start_date, end_date, gen_title) :

	(start_idx, end_idx) = get_start_end_idxs(dates, start_date, end_date)
		
	# cut time slice
	#
	date_slice = dates[start_idx : end_idx]
	slice_start_date = dates[start_idx]
	slice_end_date = dates[end_idx]
	
	open_slice = openn[start_idx : end_idx]
	close_slice = close[start_idx : end_idx]
	
	delta = []
	for i in range(len(open_slice)):
		delta.append(float(100 * (close_slice[i] - open_slice[i]) / close_slice[i]) )
	
	# -------------------------------------
	# % intra-day movement - time series

	# generate matplotlib plot
	#
	x = np.array(date_slice)
	y = np.array(delta)
	fever_fig = plt.figure()
	ax = fever_fig.add_subplot(111)
	ax.plot(x,y)
	# leg = ax.legend(('Model length'), 'upper center', shadow=True)
	
	title = gen_title(symbol, '% (close - open) / open', slice_start_date, slice_end_date)

	ax.grid(False)  
	ax.set_ylabel('100 * (Close - Open) / Open')
	ax.set_title(title)
	# date intervals & markersanalyse_daily_open_to_close_movement
	(formatter, locator) = tick_info(slice_start_date, slice_end_date)
	ax.xaxis.set_major_formatter(formatter) 
	ax.xaxis.set_major_locator(locator)
	fever_fig.autofmt_xdate(rotation=90)
	ax.set_xlim([slice_start_date, slice_end_date])
	ax.set_xlabel('Date')
	
	# -------------------------------------
	# % intra-day movement - distribution
	
	h = Histogram(delta)
	left_edge = []
	height = []
	for bin in h.bins:
		left_edge.append(float(bin.floor))
		height.append(h.bin_contrib_perc(bin))
	
	x = np.array(left_edge)
	y = np.array(height)
	
	dist_fig = plt.figure()
	ax = dist_fig.add_subplot(111)
	ax.bar(x, y, width=h.bins[0].range)
	
	ax.set_xlim(h.min, h.max)
	ax.set_ylabel('% of Population')
	ax.set_xlabel('Move i.t.o Open : 100 * (Close - Open) / Open')
	
	title = gen_title(symbol, 'Distribution of Daily Movements', slice_start_date, slice_end_date)
	ax.set_title(title)

	reports = []
	reports.append(AnalysisReport(symbol, slice_start_date, slice_end_date, 'Day Move Fever', '', fever_fig))
	reports.append(AnalysisReport(symbol, slice_start_date, slice_end_date, 'Distribution of Daily Moves', '', dist_fig))
	return reports