Exemplo n.º 1
0
    buffer_sizes={
        'obs': 2,
        'reward': 3
    },
    func_compile_obs=func_compile_obs,
    func_compile_reward=func_compile_reward,
    func_compile_action=func_compile_action,
    step_delay_target=0.5,
    is_dummy_action=False)

# TODO: define these Gym related params insode DrivingSimulatorEnv
env.observation_space = Box(low=0, high=255, shape=(350, 350, 3))
env.reward_range = (-np.inf, np.inf)
env.metadata = {}
env.action_space = Discrete(len(ACTIONS))
env = FrameStack(env, 3)

n_interactive = 0
n_skip = 2
n_additional_learn = 4
n_ep = 0  # last ep in the last run, if restart use 0
n_test = 10  # num of episode per test run (no exploration)
state_shape = (350, 350, 9)
tf.app.flags.DEFINE_string(
    "logdir", "/home/pirate03/PycharmProjects/hobotrl/playground/initialD"
    "/imitaion_learning/fnet_rename_learn_q_stack2_vec_reward",
    """save tmp model""")
tf.app.flags.DEFINE_string(
    "savedir",
    "/home/pirate03/hobotrl_data/playground/initialD/exp/fnet_rename_learn_q_stack2_vec_reward",
    """save tmp model""")
# Hobotrl
sys.path.append('../../..')
from hobotrl.algorithms import DQN
from hobotrl.network import LocalOptimizer
from hobotrl.environments import FrameStack
from hobotrl.sampling import TransitionSampler
from hobotrl.playback import BalancedMapPlayback, BigPlayback
from hobotrl. async import AsynchronousAgent
from hobotrl.utils import CappedLinear
# initialD
sys.path.append('..')
from ros_environments.clients import DrSimDecisionK8S
from exp.utils.func_networks import f_dueling_q

# Environment
env = FrameStack(DrSimDecisionK8S(), 3)

# Agent
# ============= Set Parameters =================
# --- agent basic
state_shape = env.observation_space.shape
ALL_ACTIONS = env.env._ALL_ACTIONS
AGENT_ACTIONS = ALL_ACTIONS[:3]
num_actions = len(AGENT_ACTIONS)
gamma = 0.9
greedy_epsilon = CappedLinear(10000, 0.2, 0.05)
# --- replay buffer
replay_capacity = 300000
replay_bucket_size = 100
replay_ratio_active = 0.05
replay_max_sample_epoch = 2
Exemplo n.º 3
0
 graph = tf.get_default_graph()
 # -- create learning rate var and optimizer
 lr = tf.get_variable('learning_rate', [],
                      dtype=tf.float32,
                      initializer=tf.constant_initializer(1e-3),
                      trainable=False)
 lr_in = tf.placeholder(dtype=tf.float32)
 op_set_lr = tf.assign(lr, lr_in)
 optimizer_td = tf.train.AdamOptimizer(learning_rate=lr)
 # -- create global step variable
 global_step = tf.get_variable('global_step', [],
                               dtype=tf.int32,
                               initializer=tf.constant_initializer(0),
                               trainable=False)
 # Environment
 env = FrameStack(DrSimDecisionK8S(), n_stack)
 # Agent
 replay_buffer = BigPlayback(bucket_cls=BalancedMapPlayback,
                             cache_path=replay_cache_dir,
                             capacity=replay_capacity,
                             bucket_size=replay_bucket_size,
                             ratio_active=replay_ratio_active,
                             max_sample_epoch=replay_max_sample_epoch,
                             num_actions=num_actions,
                             upsample_bias=replay_upsample_bias)
 state_shape = env.observation_space.shape
 __agent = DQN(
     f_create_q=f_net,
     state_shape=state_shape,
     # OneStepTD arguments
     num_actions=num_actions,
Exemplo n.º 4
0
def exp(dir_prefix, tf_log_dir="ckpt", our_log_dir="logging", replay_cache_dir="ReplayBufferCache",
        gpu_mem_fraction=0.15, save_checkpoint_secs=3600):
    n_skip = 6
    n_stack = 3
    if_random_phase = True
    # === Agent
    # --- agent basic
    ALL_ACTIONS = [(ord(mode),) for mode in ['s', 'd', 'a']] + [(0,)]
    AGENT_ACTIONS = ALL_ACTIONS[:3]
    num_actions = len(AGENT_ACTIONS)
    noop = 3
    gamma = 0.9
    ckpt_step = 0
    greedy_epsilon = CappedLinear(int(3e4)-ckpt_step, 0.2-(0.15/3e4*ckpt_step), 0.05)
    start_step = ckpt_step*6
    # --- replay buffer
    replay_bucket_size = 100
    replay_max_sample_epoch = 2
    # --- NN architecture
    f_net = lambda inputs: f_dueling_q(inputs, num_actions)
    if_ddqn = True
    # --- optimization
    batch_size = 8
    learning_rate = 1e-4
    target_sync_interval = 1
    target_sync_rate = 1e-3
    update_interval = 1
    max_grad_norm = 1.0
    sample_mimimum_count = 100
    update_ratio = 8.0
    # --- logging and ckpt
    replay_capacity = 300
    replay_ratio_active = 1.0

    # ===  Reward function
    class FuncReward(object):
        def __init__(self, gamma):
            self.__gamma = gamma
            self._ema_speed = 10.0
            self._ema_dist = 0.0
            self._obs_risk = 0.0
            self._road_change = False
            self._mom_opp = 0.0
            self._mom_biking = 0.0
            self._steering = False
            self._waiting_steps = 0

        def reset(self):
            self._ema_speed = 10.0
            self._ema_dist = 0.0
            self._obs_risk = 0.0
            self._road_change = False
            self._mom_opp = 0.0
            self._mom_biking = 0.0
            self._steering = False

        def _func_scalar_reward(self, rewards, action):
            """Coverts a vector reward into a scalar."""
            info = {}

            # append a reward that is 1 when action is lane switching
            rewards = rewards.tolist()
            print (' '*3 + 'R: [' + '{:4.2f} ' * len(rewards) + ']').format(
                *rewards),

            # extract relevant rewards.
            speed = rewards[0]
            dist = rewards[1]
            obs_risk = rewards[2]
            # road_invalid = rewards[3] > 0.01  # any yellow or red
            road_change = rewards[4] > 0.01  # entering intersection
            opp = rewards[5]
            biking = rewards[6]
            # inner = rewards[7]
            # outter = rewards[8]
            steer = np.logical_or(action == 1, action == 2)
            if speed < 0.1:
                self._waiting_steps += 1
            else:
                self._waiting_steps = 0

            # update reward-related state vars
            ema_speed = 0.5 * self._ema_speed + 0.5 * speed
            ema_dist = 1.0 if dist > 2.0 else 0.9 * self._ema_dist
            mom_opp = min((opp < 0.5) * (self._mom_opp + 1), 20)
            mom_biking = min((biking > 0.5) * (self._mom_biking + 1), 12)
            steering = steer if action != 3 else self._steering
            self._ema_speed = ema_speed
            self._ema_dist = ema_dist
            self._obs_risk = obs_risk
            self._road_change = road_change
            self._mom_opp = mom_opp
            self._mom_biking = mom_biking
            self._steering = steering
            print '{:3.0f}, {:3.0f}, {:4.2f}, {:3.0f}'.format(
                mom_opp, mom_biking, ema_dist, self._steering),
            info['reward_fun/speed'] = speed
            info['reward_fun/dist2longest'] = dist
            info['reward_fun/obs_risk'] = obs_risk
            info['reward_fun/road_change'] = road_change
            info['reward_fun/on_opposite'] = opp
            info['reward_fun/on_biking'] = biking
            info['reward_fun/steer'] = steer
            info['reward_fun/mom_opposite'] = mom_opp
            info['reward_fun/mom_biking'] = mom_biking
            info['waiting_steps'] = self._waiting_steps

            # calculate scalar reward
            reward = [
                # velocity
                speed * 10 - 10,
                # obs factor
                -100.0 * obs_risk,
                # opposite
                -20 * (0.9 + 0.1 * mom_opp) * (mom_opp > 1.0),
                # ped
                -40 * (0.9 + 0.1 * mom_biking) * (mom_biking > 1.0),
                # steer
                steering * -40.0,
                # distance to longest
                -20.0 * (dist > 3.75/2)
            ]
            reward = np.sum(reward) / 100.0
            print ': {:5.2f}'.format(reward)

            return reward, info

        def _func_early_stopping(self):
            """Several early stopping criterion."""
            info = {}
            done = False
            # switched lane while going into intersection.
            if self._road_change and self._ema_dist > 0.2:
                print "[Episode early stopping] turned into intersection."
                done = True
                info['banned_road_change'] = True

            # used biking lane to cross intersection
            if self._road_change and self._mom_biking > 0:
                print "[Episode early stopping] entered intersection on biking lane."
                done = True
                info['banned_road_change'] = True

            # hit obstacle
            if self._obs_risk > 1.0:
                print "[Episode early stopping] hit obstacle."
                done = True

            # waiting too long
            if self._waiting_steps > 80:
                print "[Episode early stopping] waiting too long"
                done = True

            return done, info

        def _func_skipping_bias(self, reward, done, info, n_skip, cnt_skip):
            new_info = {}
            if 'banned_road_change' in info:
                reward -= 1.0 * (n_skip - cnt_skip)
            if done:
                pass
            new_info['reward_fun/reward'] = reward
            return reward, new_info

        def __call__(self, action, rewards, done, n_skip=1, cnt_skip=0):
            info = {}
            reward, info_diff  = self._func_scalar_reward(rewards, action)
            info.update(info_diff)
            early_done, info_diff = self._func_early_stopping()
            done = done | early_done
            info.update(info_diff)
            reward, info_diff = self._func_skipping_bias(
                reward, done, info, n_skip, cnt_skip)
            info.update(info_diff)
            if done:
                info['flag_success'] = reward > 0.0
                self.reset()

            return reward, done, info
    # ==========================================
    # ==========================================
    # ==========================================

    env, replay_buffer, _agent = None, None, None
    try:
        # Parse flags
        # FLAGS = tf.app.flags.FLAGS
        tf_log_dir = os.sep.join([dir_prefix, tf_log_dir])
        our_log_dir = os.sep.join([dir_prefix, our_log_dir])
        replay_cache_dir = os.sep.join([dir_prefix, replay_cache_dir])

        # Modify tf graph
        graph = tf.get_default_graph()
        # -- create learning rate var and optimizer
        lr = tf.get_variable(
            'learning_rate', [], dtype=tf.float32,
            initializer=tf.constant_initializer(1e-3), trainable=False
        )
        lr_in = tf.placeholder(dtype=tf.float32)
        op_set_lr = tf.assign(lr, lr_in)
        optimizer_td = tf.train.AdamOptimizer(learning_rate=lr)
        # -- create global step variable
        global_step = tf.get_variable(
            'global_step', [], dtype=tf.int32,
            initializer=tf.constant_initializer(0), trainable=False)

        def gen_default_backend_cmds():
            ws_path = '/Projects/catkin_ws/'
            initialD_path = '/Projects/hobotrl/playground/initialD/'
            backend_path = initialD_path + 'ros_environments/backend_scripts/'
            utils_path = initialD_path + 'ros_environments/backend_scripts/utils/'
            backend_cmds = [
                ['python', utils_path + '/iterate_test_case.py'],
                # Parse maps
                ['python', utils_path + 'parse_map.py',
                 ws_path + 'src/Map/src/map_api/data/honda_wider.xodr',
                 utils_path + 'road_segment_info.txt'],
                # Start roscore
                ['roscore'],
                # Reward function script
                ['python', backend_path + 'gazebo_rl_reward.py'],
                # Road validity node script
                ['python', backend_path + 'road_validity.py',
                 utils_path + 'road_segment_info.txt.signal'],
                # Simulation restarter backend
                ['python', backend_path+'rviz_restart.py', 'next.launch'],
            ]
            return backend_cmds

        # Environment
        env = FrameStack(DrSimDecisionK8S(backend_cmds=gen_default_backend_cmds()), n_stack)
        # Agent
        replay_buffer = BigPlayback(
            bucket_cls=MapPlayback,
            cache_path=replay_cache_dir,
            capacity=replay_capacity,
            bucket_size=replay_bucket_size,
            ratio_active=replay_ratio_active,
            max_sample_epoch=replay_max_sample_epoch,
        )
        state_shape = env.observation_space.shape
        __agent = DQN(
            f_create_q=f_net, state_shape=state_shape,
            # OneStepTD arguments
            num_actions=num_actions, discount_factor=gamma, ddqn=if_ddqn,
            # target network sync arguments
            target_sync_interval=target_sync_interval,
            target_sync_rate=target_sync_rate,
            # epsilon greedy arguments
            greedy_epsilon=greedy_epsilon,
            # optimizer arguments
            network_optimizer=LocalOptimizer(optimizer_td, max_grad_norm),
            # sampler arguments
            sampler=TransitionSampler(
                replay_buffer,
                batch_size=batch_size,
                interval=update_interval,
                minimum_count=sample_mimimum_count),
            # checkpoint
            global_step=global_step
         )
        # Utilities
        stepsSaver = StepsSaver(our_log_dir)
        reward_vector2scalar = FuncReward(gamma)
        # Configure sess
        config = tf.ConfigProto()
        config.gpu_options.per_process_gpu_memory_fraction = gpu_mem_fraction
        with __agent.create_session(
                config=config, save_dir=tf_log_dir,
                save_checkpoint_secs=save_checkpoint_secs) as sess, \
            AsynchronousAgent(
                agent=__agent, method='ratio', ratio=update_ratio) as _agent:
            agent = SkippingAgent(
                # n_skip_vec=(2, 6, 6),
                agent=_agent, n_skip=n_skip, specific_act=noop
            )
            summary_writer = SummaryWriterCache.get(tf_log_dir)
            # set vars
            sess.run(op_set_lr, feed_dict={lr_in: learning_rate})
            print "Using learning rate {}".format(sess.run(lr))
            n_ep = 0
            n_total_steps = start_step
            # GoGoGo
            while n_total_steps <= 2.5e5:
                cum_reward = 0.0
                n_ep_steps = 0
                state = env.reset()
                while True:
                    action = agent.act(state, exploration=False)
                    if action != 3:
                        print_qvals(
                            n_ep_steps, __agent, state, action, AGENT_ACTIONS
                        )
                    next_state, vec_reward, done, env_info = env.step(action)
                    reward, done, reward_info = reward_vector2scalar(
                        action, vec_reward, done, agent.n_skip, agent.cnt_skip
                    )
                    agent_info = agent.step(
                        sess=sess, state=state, action=action,
                        reward=reward, next_state=next_state,
                        episode_done=done, learning_off=True
                    )
                    env_info.update(reward_info)
                    summary_proto = log_info(
                        agent_info, env_info,
                        done,
                        cum_reward,
                        n_ep, n_ep_steps, n_total_steps,
                    )
                    summary_writer.add_summary(summary_proto, n_total_steps)
                    n_total_steps += 1
                    n_ep_steps += 1
                    cum_reward += reward
                    flag_success = reward_info['flag_success'] \
                        if 'flag_success' in reward_info else False
                    stepsSaver.save(
                        n_ep, n_total_steps,
                        state, action, vec_reward, reward, done,
                        cum_reward, flag_success
                    )
                    state = next_state
                    if done:
                        n_ep += 1
                        logging.warning(
                            "Episode {} finished in {} steps, reward is {}.".format(
                                n_ep, n_ep_steps, cum_reward,
                            )
                        )
                        break
                if n_ep >= 100:
                    break

    except Exception as e:
        print e.message
        traceback.print_exc()
    finally:
        logging.warning("="*30)
        logging.warning("="*30)
        logging.warning("Tidying up...")
        # kill orphaned monitor daemon process
        if env is not None:
            env.env.exit()
        replay_buffer.close()
        if replay_buffer is not None:
            replay_buffer.close()
        if _agent is not None:
            _agent.stop()
        # os.killpg(os.getpgid(os.getpid()), signal.SIGKILL)
        import time
        logging.warning("waiting for k8s end")
        time.sleep(180)
        logging.warning("="*30)
    def exit(self):
        self.__wrapped__.exit()

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.exit()


# ================

# Environment
env = EnvNoOpSkipping(env=EnvRewardVec2Scalar(
    FrameStack(DrSimDecisionK8S(), n_stack)),
                      n_skip=n_skip,
                      gamma=gamma,
                      if_random_phase=if_random_phase)

# ==========================================
# State Wrapper
src_size = (700, 700)
dst_size = (350, 350)
center_src = (350, 350)
center_dst = (175, 175)
linear_part_ratio_dst = 0.2
k_scale = 0.5  # dst_size[0]/src_size[0] typically, set by hand if needed
d = 1.0 / k_scale

mapx = np.zeros((dst_size[1], dst_size[0]), dtype=np.float32)
Exemplo n.º 6
0
 graph = tf.get_default_graph()
 # -- create learning rate var and optimizer
 lr = tf.get_variable('learning_rate', [],
                      dtype=tf.float32,
                      initializer=tf.constant_initializer(1e-3),
                      trainable=False)
 lr_in = tf.placeholder(dtype=tf.float32)
 op_set_lr = tf.assign(lr, lr_in)
 optimizer_td = tf.train.AdamOptimizer(learning_rate=lr)
 # -- create global step variable
 global_step = tf.get_variable('global_step', [],
                               dtype=tf.int32,
                               initializer=tf.constant_initializer(0),
                               trainable=False)
 # Environment
 env = FrameStack(DrSimDecisionK8S(backend_cmds=gen_backend_cmds()),
                  n_stack)
 # Agent
 replay_buffer = BigPlayback(bucket_cls=BalancedMapPlayback,
                             cache_path=replay_cache_dir,
                             capacity=replay_capacity,
                             bucket_size=replay_bucket_size,
                             ratio_active=replay_ratio_active,
                             max_sample_epoch=replay_max_sample_epoch,
                             num_actions=num_actions,
                             upsample_bias=replay_upsample_bias)
 state_shape = env.observation_space.shape
 __agent = DQN(
     f_create_q=f_net,
     state_shape=state_shape,
     # OneStepTD arguments
     num_actions=num_actions,
        return backend_cmds

    def exit(self):
        self.__wrapped__.exit()

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.exit()
# ================


# Environment
env = EnvNoOpSkipping(
    env=EnvRewardVec2Scalar(FrameStack(DrSimDecisionK8S(), n_stack)),
    n_skip=n_skip, gamma=gamma, if_random_phase=if_random_phase
)

# ==========================================
# State Wrapper
src_size = (350,350)
dst_size = (350,350)
center_src = (175,175)
center_dst = (175,175)
linear_part_ratio_dst = 0.2
k_scale = 1.0  # dst_size[0]/src_size[0] typically, set by hand if needed
d = 1.0 / k_scale

mapx = np.zeros((dst_size[1], dst_size[0]), dtype=np.float32)
mapy = np.zeros((dst_size[1], dst_size[0]), dtype=np.float32)