Exemplo n.º 1
0
    def synchronize(self):
        completed = set()
        for x in self._handles.keys():
          completed.update(x) if isinstance(x, tuple) else completed.add(x)
        missing_p = self._requires_update - completed
        for p in missing_p:
            handle, ctx = self._allreduce_grad_async(p)
            self._handles[p] = (handle, ctx)

        for p, (handle, ctx) in self._handles.items():
            if handle is None:
                handle, ctx = self._allreduce_grad_async(p)
                self._handles[p] = (handle, ctx)
        for p, (handle, ctx) in self._handles.items():

            if isinstance(p, tuple):
                # This was a grouped result, need to unpack
                outputs = synchronize(handle)
                for gp, output, gctx in zip(p, outputs, ctx):
                    self._allreduce_delay[gp] = self.backward_passes_per_step
                    gp.grad.set_(self._compression.decompress(output, gctx))
            else:
                output = synchronize(handle)
                self._allreduce_delay[p] = self.backward_passes_per_step
                p.grad.set_(self._compression.decompress(output, ctx))
        self._handles.clear()

        self._synchronized = True
Exemplo n.º 2
0
    def synchronize(self):
        missing_p = self._requires_update - set(self._handles.keys())
        for p in missing_p:
            if self._sparse:
                handle, ctx = self._sparse_allreduce_async(p)
                self._handles[p] = (handle, ctx)
            else:
                handle, ctx = self._allreduce_grad_async(p)
                self._handles[p] = (handle, ctx)

        num_of_workers = size()
        for p, value in self._handles.items():
            name = self._parameter_names.get(p)
            if self._sparse:
                handle, ctx = value
                output = synchronize(handle)
                new_grad = p.grad.data.view(-1).fill_(0.0)
                numel = output.numel()
                real_num_values = numel//num_of_workers
                for i in range(num_of_workers):
                    values_and_indexes = output.data[i*real_num_values:(i+1)*real_num_values]
                    values = values_and_indexes[0:real_num_values//2]
                    indexes = values_and_indexes[real_num_values//2:].long()
                    new_grad[indexes] = values
                new_grad = new_grad.reshape(p.grad.data.shape)
                #print('name: ', name, ' output shape: ', output.shape)
                #p.grad.data.set_(self._compression.decompress(output, None, name=name))
                p.grad.data.set_(new_grad)
            else:
                handle, ctx = value
                output = synchronize(handle)
                p.grad.data.set_(self._compression.decompress(output, ctx, name=name))

        self._handles.clear()
Exemplo n.º 3
0
def broadcast_parameters(params, root_rank):
    """
    Broadcasts the parameters from root rank to all other processes.
    Typical usage is to broadcast the `model.state_dict()`,
    `model.named_parameters()`, or `model.parameters()`.

    Arguments:
        params: One of the following:
            - list of parameters to broadcast
            - dict of parameters to broadcast
        root_rank: The rank of the process from which parameters will be
                   broadcasted to all other processes.
    """
    if isinstance(params, dict):
        params = sorted(params.items())
    elif isinstance(params, list):
        # support both named_parameters() and regular parameters()
        params = [p if isinstance(p, tuple) else (None, p) for p in params]
    else:
        raise ValueError('invalid params of type: %s' % type(params))

    # Run asynchronous broadcasts.
    handles = []
    for name, p in params:
        if isinstance(p, torch.autograd.Variable):
            p = p.data
        handle = broadcast_async_(p, root_rank, name)
        handles.append(handle)

    # Wait for completion.
    for handle in handles:
        synchronize(handle)
Exemplo n.º 4
0
    def synchronize(self):
        if hvd.size() > 1:
            for p in self._handles:
                handle = self._handles[p]
                synchronize(handle)
                begin_time = time.time()
                p_size = np.prod(p.size())
                torch.cuda.synchronize()
                begin_comm_time = time.time()
                if self._use_allgather and p_size > 1024:
                    #fjr decompress
                    name = self._parameter_names.get(p)
                    msg_size = self._compressed_msg_size[name]
                    g_size = p.grad.data.size()
                    p_flatten = p.grad.data.view(-1)
                    p_flatten.zero_()
                    p_flatten[self._compressed_idx[
                        name]] = self._compressed_val[name]
                    p.grad.data = p.grad.data.view(g_size)
                    if self._debug:
                        print("diff : ",
                              torch.sum(self._v_ref[name] - p.grad.data))

                torch.cuda.synchronize()
                end_comm_time = time.time()
                self.pack_time += end_comm_time - begin_comm_time

                torch.cuda.synchronize()
                end_time = time.time()
                self.pruning_time += end_time - begin_time

        self._handles.clear()
Exemplo n.º 5
0
def broadcast_parameters(params, root_rank):
    """
    Broadcasts the parameters from root rank to all other processes.
    Typical usage is to broadcast the `model.state_dict()`,
    `model.named_parameters()`, or `model.parameters()`.

    Arguments:
        params: The list of parameters to broadcast.
        root_rank: The rank of the process from which parameters will be
                   broadcasted to all other processes.
    """
    if isinstance(params, dict):
        params = sorted(params.items())
    else:
        # support both named_parameters() and regular parameters()
        params = [p if isinstance(p, tuple) else (None, p) for p in params]

    # Run asynchronous broadcasts.
    handles = []
    for name, p in params:
        if isinstance(p, torch.autograd.Variable):
            p = p.data
        handle = broadcast_async_(p, root_rank, name)
        handles.append(handle)

    # Wait for completion.
    for handle in handles:
        synchronize(handle)
Exemplo n.º 6
0
def broadcast_parameters(params, root_rank):
    """
    Broadcasts the parameters from root rank to all other processes.
    Typical usage is to broadcast the `model.state_dict()`,
    `model.named_parameters()`, or `model.parameters()`.

    Arguments:
        params: One of the following:
            - list of parameters to broadcast
            - dict of parameters to broadcast
        root_rank: The rank of the process from which parameters will be
                   broadcasted to all other processes.
    """
    if isinstance(params, dict):
        params = sorted(params.items())
    elif isinstance(params, list):
        # support both named_parameters() and regular parameters()
        params = [p if isinstance(p, tuple) else (None, p) for p in params]
    else:
        raise ValueError('invalid params of type: %s' % type(params))

    # Run asynchronous broadcasts.
    handles = []
    for name, p in params:
        handle = broadcast_async_(p, root_rank, name)
        handles.append(handle)

    # Wait for completion.
    for handle in handles:
        synchronize(handle)
Exemplo n.º 7
0
    def synchronize(self):
        if hvd.size() > 1:
            for p in self._handles:
                handle = self._handles[p]
                synchronize(handle)
                #p_size = np.prod(p.size())

                p_size = torch.numel(p)
                if self._use_allgather and p_size > self._plan1:
                    handle = self._handles_val[p]
                    synchronize(handle)
                    torch.cuda.synchronize()
                    begin_time_sync = time.time()
                    #fjr decompress
                    name = self._parameter_names.get(p)

                    g_size = p.grad.data.size()
                    p_flatten = p.grad.data.view(-1)
                    p_flatten.zero_()

                    torch.cuda.synchronize()
                    begin_unpack_time =  time.time()
                    if self._use_gpu:
                        if p_size > self._plan3:
                            #count_nnz = 0
                            offset = 0
                            for node_idx in range(hvd.size()):
                                msg_size = self._compressed_idx[name][offset]
                                offset += 1
                                p_flatten[self._compressed_idx[name][ offset: \
                                        offset + msg_size]] += \
                                        self._compressed_val[name][node_idx]
                                offset += msg_size;
                            #count_nnz += msg_size
                            #if hvd.rank() == 0:
                            #    print("sparsity ", name, count_nnz.cpu().numpy()/(p_size))
                        else:
                            msg_size = self._compressed_msg_size[name]
                            for node_idx in range(hvd.size()):
                                p_flatten[self._compressed_idx[name][node_idx*msg_size : \
                                        node_idx*msg_size + msg_size]] += \
                                        self._compressed_val[name][node_idx]

                    p.grad.data = p_flatten.view(g_size)
                    torch.cuda.synchronize()
                    self.unpack_time += time.time() - begin_unpack_time
                    torch.cuda.synchronize()
                    self.pruning_time += time.time() - begin_time_sync

                    if self._debug:
                        diff = torch.sum(self._v_ref[name] - p.grad.data)
                        if( torch.abs(diff) > 1e-3 ):
                            print("error diff is, ", diff, name, p.size())

                else:
                    pass

        self._handles.clear()
        self._handles_val.clear()
Exemplo n.º 8
0
 def synchronize(self):
     for param_group in self.param_groups:
         for p in param_group['params']:
             name = self._parameter_names.get(p)
             handle = allreduce_async_(p.grad.data, average=True, name=name)
             self._handles[p] = handle
     for handle in self._handles.values():
         synchronize(handle)
     self._handles.clear()
Exemplo n.º 9
0
    def synchronize(self):
        if hvd.size() > 1:
            for p in self._handles:
                handle = self._handles[p]
                synchronize(handle)
                torch.cuda.synchronize()
                begin_time = time.time()
                p_size = np.prod(p.size())
                if self._use_allgather and p_size > 1024:
                    #fjr decompress
                    name = self._parameter_names.get(p)

                    torch.cuda.synchronize()
                    begin_pack_time = time.time()

                    g_size = p.grad.data.size()
                    p_flatten = p.grad.data.view(-1)
                    p_flatten.zero_()
                    #print("p_flatten size is ,", p_flatten.size())
                    #print("compressed msg, ", self._compressed_msg[name], 'rank, ', hvd.local_size())
                    #print("hand is ", handle)
                    offset = 0
                    for node_idx in range(hvd.size()):
                        if self._use_gpu:
                            msg_size = self._compressed_msg[name][offset].type(
                                'torch.cuda.LongTensor')
                            offset += 1
                            p_flatten[self._compressed_msg[name][ offset: \
                                    offset + msg_size].type('torch.cuda.LongTensor')] += \
                                    self._compressed_msg[name][offset + msg_size : \
                                    offset + 2*msg_size]
                            offset += msg_size * 2
                        else:
                            msg_size = self._compressed_msg[name][offset].type(
                                'torch.LongTensor')
                            offset += 1
                            p_flatten[self._compressed_msg[name][ offset: \
                                    offset + msg_size].type('torch.LongTensor')] += \
                                    self._compressed_msg[name][offset + msg_size : \
                                    offset + 2*msg_size]
                            offset += msg_size * 2

                    torch.cuda.synchronize()
                    self.pack_time += time.time() - begin_pack_time

                    p.grad.data = p_flatten.view(g_size)
                    if self._debug:
                        diff = torch.sum(self._v_ref[name] - p.grad.data)
                        if (torch.abs(diff) > 1e-3):
                            print("error diff is, ", diff, name, p.size())

                torch.cuda.synchronize()
                end_time = time.time()
                self.pruning_time += end_time - begin_time

        self._handles.clear()
Exemplo n.º 10
0
    def synchronize(self):
        for p in self._handles:
            handle = self._handles[p]
            synchronize(handle)
            begin_time = time.time()

            torch.cuda.synchronize()
            end_time = time.time()
            self.pruning_time += end_time - begin_time

        self._handles.clear()
Exemplo n.º 11
0
    def synchronize(self):
        for p in self._handles:
            handle = self._handles[p]
            synchronize(handle)
            p_size = np.prod(p.size())
            begin_time = time.time()

            if self._use_allgather and p_size > 1024:
                torch.cuda.synchronize()
                begin_unpack_time = time.time()
                #fjr decompress
                if p_size < 1500 * 10000:
                    handle = self._handles_val[p]
                    synchronize(handle)
                name = self._parameter_names.get(p)
                g_size = p.grad.data.size()
                p_flatten = p.grad.data.view(-1)
                p_flatten.zero_()
                offset = 0
                if p_size < 1500 * 10000:
                    for node_idx in range(hvd.size()):
                        if self._use_gpu:
                            msg_size = self._compressed_idx[name][offset]
                            offset += 1
                            p_flatten[self._compressed_idx[name][ offset: \
                                offset + msg_size]] += \
                               self._compressed_val[name][node_idx]
                            offset += msg_size
                else:
                    for node_idx in range(hvd.size()):
                        if self._use_gpu:
                            msg_size = self._compressed_msg[name][offset].type(
                                'torch.cuda.LongTensor')
                            offset += 1
                            p_flatten[self._compressed_msg[name][ offset: \
                                offset + msg_size].type('torch.cuda.LongTensor')] += \
                               self._compressed_msg[name][offset + msg_size : \
                               offset + 2*msg_size]
                            offset += msg_size * 2

                p.grad.data = p.grad.data.view(g_size)
                if self._debug:
                    print("diff : ",
                          torch.sum(self._v_ref[name] - p.grad.data))

                torch.cuda.synchronize()
                self.unpack_time += time.time() - begin_unpack_time

            torch.cuda.synchronize()
            end_time = time.time()
            self.pruning_time += end_time - begin_time

        self._handles.clear()
        self._handles_val.clear()
Exemplo n.º 12
0
    def synchronize(self):
        for p in self._handles:
            handle = self._handles[p]
            synchronize(handle)
            p_size = np.prod(p.size())
            begin_time = time.time()

            torch.cuda.synchronize()
            begin_comm_time = time.time()
            if self._use_allgather and p_size > 1024:
                #fjr decompress
                name = self._parameter_names.get(p)
                msg_size = self._compressed_msg_size[name]
                #print("rank, msg_size is ", hvd.local_rank(), msg_size)
                g_size = p.grad.data.size()
                p_flatten = p.grad.data.view(-1)
                p_flatten.zero_()
                #print("p_flatten size is ,", p_flatten.size())
                #print("compressed msg, ", self._compressed_msg[name], 'rank, ', hvd.local_size())
                #print("hand is ", handle)
                for node_idx in range(hvd.size()):
                    if self._use_gpu:
                        if p_size == 1500 * 10000:
                            p_flatten[self._compressed_msg[name][node_idx*msg_size*2 : \
                                    node_idx*msg_size*2 + msg_size].type('torch.cuda.LongTensor')] += \
                                    self._compressed_msg[name][node_idx*msg_size*2 + msg_size : \
                                node_idx*msg_size*2 + 2*msg_size]
                        else:
                            mean_val = torch.mean(self._compressed_msg[name][node_idx*msg_size*2 + msg_size : \
                                node_idx*msg_size*2 + 2*msg_size])
                            p_flatten[self._compressed_msg[name][node_idx*msg_size*2 : \
                                    node_idx*msg_size*2 + msg_size].type('torch.cuda.LongTensor')] += \
                                    mean_val

                    else:
                        p_flatten[self._compressed_msg[name][node_idx*msg_size*2 : \
                                node_idx*msg_size*2 + msg_size].type('torch.LongTensor')] += \
                                self._compressed_msg[name][node_idx*msg_size*2 + msg_size : \
                                node_idx*msg_size*2 + 2*msg_size]

                p.grad.data = p.grad.data.view(g_size)
                if self._debug:
                    print("diff : ",
                          torch.sum(self._v_ref[name] - p.grad.data))

            torch.cuda.synchronize()
            end_time = time.time()
            self.pruning_time += end_time - begin_time
            self.comm_time += time.time() - begin_comm_time

        self._handles.clear()
Exemplo n.º 13
0
    def backward(self, grad_output):
        grad_output = grad_output.contiguous()
        saved_input, weight, mean, invstd, count_all = self.saved_tensors
        need_input_grad, need_weight_grad, need_bias_grad = self.needs_input_grad[
            0:3]

        # calculate local stats as well as grad_weight / grad_bias
        sum_dy, sum_dy_xmu, grad_weight, grad_bias = torch.batch_norm_backward_reduce(
            grad_output, saved_input, mean, invstd, weight, need_input_grad,
            need_weight_grad, need_bias_grad)

        if need_input_grad:
            # synchronizing stats used to calculate input gradient.
            sum_dy_handle = allreduce_async(sum_dy,
                                            op=Sum,
                                            name='sync_batch_norm.sum_dy')
            sum_dy_xmu_handle = allreduce_async(
                sum_dy_xmu, op=Sum, name='sync_batch_norm.sum_dy_xmu')

            # wait on the async communication to finish
            sum_dy = synchronize(sum_dy_handle)
            sum_dy_xmu = synchronize(sum_dy_xmu_handle)

            if _SYNC_BN_V2 or _SYNC_BN_V3:
                count_all_sum = count_all.sum()
                mean_dy = sum_dy / count_all_sum
                mean_dy_xmu = sum_dy_xmu / count_all_sum
            else:
                # before 1.5.0, sum_dy was sum of means from every worker, so we just
                # need to divide it by number of workers
                mean_dy = sum_dy / size()
                mean_dy_xmu = sum_dy_xmu / size()

            # backward pass for gradient calculation
            grad_input = torch.batch_norm_backward_elemt(
                grad_output, saved_input, mean, invstd, weight, mean_dy,
                mean_dy_xmu)
        else:
            grad_input = None

        # synchronizing of grad_weight / grad_bias is not needed as distributed
        # training would handle all reduce.
        if weight is None or not need_weight_grad:
            grad_weight = None

        if weight is None or not need_bias_grad:
            grad_bias = None

        return grad_input, grad_weight, grad_bias, None, None, None, None, None, None
Exemplo n.º 14
0
    def synchronize(self):
        if not self.process_set.included():
            self._synchronized = True
            return

        completed = set()
        for x in self._handles.keys():
            completed.update(x) if isinstance(x, tuple) else completed.add(x)
        missing_p = self._requires_update - completed
        for p in missing_p:
            handle, ctx = self._allreduce_grad_async(p)
            self._handles[p] = (handle, ctx)

        for p, (handle, ctx) in self._handles.items():
            if handle is None:
                handle, ctx = self._allreduce_grad_async(p)
                self._handles[p] = (handle, ctx)
        for p, (handle, ctx) in self._handles.items():

            if isinstance(p, tuple):
                # This was a grouped result, need to unpack
                outputs = synchronize(handle)
                for gp, output, gctx in zip(p, outputs, ctx):
                    self._allreduce_delay[gp] = self.backward_passes_per_step
                    gp.grad.set_(self._compression.decompress(output, gctx))
                if self._groups is not None and self._group_counts[p] != 0:
                    self._group_counts[p] = 0
            else:
                # When handle is a callable function, it returns the aggregated tensor result
                output = synchronize(
                    handle) if not callable(handle) else handle()
                self._allreduce_delay[p] = self.backward_passes_per_step
                if self._groups is not None:
                    group = self._p_to_group[p]
                    if self._group_counts[group] != 0:
                        self._group_counts[group] = 0
                if p.grad.is_sparse:
                    aggregated = self._compression.decompress(output, ctx)
                    if not aggregated.is_sparse:
                        # When sparse_as_dense=True we need to convert the grad back to sparse before update
                        aggregated = aggregated.to_sparse()

                    # Sparse grads do not support set_ for some reason, so we do this as an equivalent
                    p.grad.zero_().add_(aggregated)
                else:
                    p.grad.set_(self._compression.decompress(output, ctx))
        self._handles.clear()

        self._synchronized = True
Exemplo n.º 15
0
    def synchronize(self):
        synced = False
        if self.count_down == 0:
            missing_p = self._requires_update - set(self._handles.keys())
            for p in missing_p:
                self._allreduce_tensor(p)

            if self._multi_node:
                for p, value in self._handles.items():
                    handle, ctx = value
                    output = synchronize(handle)
                    p.grad.set_(
                        self._compression.decompress(output, ctx) /
                        self.accumulation_step)
            else:
                buckets = OrderedDict()
                for tensor in self._handles.values():
                    tp = tensor.type()
                    if tp not in buckets:
                        buckets[tp] = []
                    buckets[tp].append(tensor)
                for tp in buckets:
                    bucket = buckets[tp]
                    coalesced = flatten(
                        bucket) / self.world_size / self.accumulation_step
                    torch.distributed.all_reduce_multigpu([coalesced])
                    for buf, synced in zip(bucket,
                                           unflatten(coalesced, bucket)):
                        buf.copy_(synced)
            self._handles.clear()
            synced = True
            self.count_down = self.accumulation_step

        self.count_down -= 1
        return synced
Exemplo n.º 16
0
    def synchronize(self):
        if hvd.size() > 1:
            for p in self._handles:
                handle = self._handles[p]
                synchronize(handle)
                torch.cuda.synchronize()
                begin_time = time.time()
                p_size = np.prod(p.size())
                if self._use_allgather and p_size > 1024:
                    handle = self._handles_val[p]
                    synchronize(handle)
                    #fjr decompress
                    name = self._parameter_names.get(p)
                    #msg_size = self._compressed_msg_size[name]
                    #print("rank, msg_size is ", hvd.local_rank(), msg_size)

                    torch.cuda.synchronize()
                    begin_pack_time =  time.time()

                    g_size = p.grad.data.size()
                    p_flatten = p.grad.data.view(-1)
                    p_flatten.zero_()
                    offset = 0
                    for node_idx in range(hvd.size()):
                        if self._use_gpu:
                            msg_size = self._compressed_idx[name][offset]
                            offset += 1
                            p_flatten[self._compressed_idx[name][ offset: \
                                    offset + msg_size]] += \
                                    self._compressed_val[name][node_idx]
                            offset += msg_size;

                    p.grad.data = p_flatten.view(g_size)
                    torch.cuda.synchronize()
                    self.pack_time += time.time() - begin_pack_time
                    if self._debug:
                        diff = torch.sum(self._v_ref[name] - p.grad.data)
                        if( torch.abs(diff) > 1e-3 ):
                            print("error diff is, ", diff, name, p.size())

                torch.cuda.synchronize()
                end_time = time.time()
                self.pruning_time += end_time - begin_time

        self._handles.clear()
        self._handles_val.clear()
Exemplo n.º 17
0
    def synchronize(self):
        for p in self._handles:
            handle = self._handles[p]
            synchronize(handle)
            begin_time = time.time()

            torch.cuda.synchronize()
            begin_comm_time = time.time()
            #if self._use_allgather and p_size > 1024 and hvd.size() > 1:
            #    #fjr decompress
            #    name = self._parameter_names.get(p)
            #    msg_size = self._compressed_msg_size[name]
            #    #print("rank, msg_size is ", hvd.local_rank(), msg_size)
            #    g_size = p.grad.data.size()
            #    p_flatten = p.grad.data.view(-1)
            #    p_flatten.zero_()
            #    #print("p_flatten size is ,", p_flatten.size())
            #    #print("compressed msg, ", self._compressed_msg[name], 'rank, ', hvd.local_size())
            #    #print("hand is ", handle)
            #    for node_idx in range(hvd.size()):
            #        if self._use_gpu:
            #            p_flatten[self._compressed_msg[name][node_idx*msg_size*2 : \
            #                    node_idx*msg_size*2 + msg_size].type('torch.cuda.LongTensor')] += \
            #                    self._compressed_msg[name][node_idx*msg_size*2 + msg_size : \
            #                    node_idx*msg_size*2 + 2*msg_size]
            #        else:
            #            p_flatten[self._compressed_msg[name][node_idx*msg_size*2 : \
            #                    node_idx*msg_size*2 + msg_size].type('torch.LongTensor')] += \
            #                    self._compressed_msg[name][node_idx*msg_size*2 + msg_size : \
            #                    node_idx*msg_size*2 + 2*msg_size]

            #    p.grad.data = p.grad.data.view(g_size)
            #    if self._debug:
            #        print("diff : ", torch.sum(self._v_ref[name] - p.grad.data))

            torch.cuda.synchronize()
            end_comm_time = time.time()
            self.pack_time += end_comm_time - begin_comm_time

            torch.cuda.synchronize()
            end_time = time.time()
            self.pruning_time += end_time - begin_time

        self._handles.clear()
Exemplo n.º 18
0
    def synchronize(self):
        missing_p = self._requires_update - set(self._handles.keys())
        for p in missing_p:
            self._allreduce_grad(p)

        for p, value in self._handles.items():
            handle, ctx = value
            output = synchronize(handle)
            p.grad.data.set_(self._compression.decompress(output, ctx))
        self._handles.clear()
Exemplo n.º 19
0
    def synchronize(self):
        for p in self._handles:
            handle = self._handles[p]
            synchronize(handle)
            p_size = np.prod(p.size())
            begin_time = time.time()

            torch.cuda.synchronize()
            begin_comm_time =  time.time()
            if self._use_allgather and p_size > 1024:
                #fjr decompress
                handle = self._handles_val[p]
                synchronize(handle)
                name = self._parameter_names.get(p)
                msg_size = self._compressed_msg_size[name]
                #print("rank, msg_size is ", hvd.local_rank(), msg_size)
                g_size = p.grad.data.size()
                p_flatten = p.grad.data.view(-1)
                p_flatten.zero_()
                #print("p_flatten size is ,", p_flatten.size())
                #print("compressed msg, ", self._compressed_msg[name], 'rank, ', hvd.local_size())
                #print("hand is ", handle)
                offset = 0
                for node_idx in range(hvd.size()):
                    if self._use_gpu:
                        msg_size = self._compressed_idx[name][offset]
                        offset += 1
                        p_flatten[self._compressed_idx[name][ offset: \
                            offset + msg_size]] += \
                           self._compressed_val[name][node_idx]
                        offset += msg_size;

                p.grad.data = p.grad.data.view(g_size)
                if self._debug:
                    print("diff : ", torch.sum(self._v_ref[name] - p.grad.data))

            torch.cuda.synchronize()
            end_time = time.time()
            self.pruning_time += end_time - begin_time
            self.comm_time += time.time() - begin_comm_time

        self._handles.clear()
Exemplo n.º 20
0
 def synchronize(self):
     for p, value in self._handles.items():
         handle, ctx = value
         if handle is None:
             handle, ctx = self._allreduce_grad(p)
             self._handles[p] = (handle, ctx)
     for p, (handle, _) in self._handles.items():
         output = mpi_ops.synchronize(handle)
         self._allreduce_delay[p] = self.backward_passes_per_step
         p.grad.data.set_(self._compression.decompress(output, ctx))
     self._handles.clear()
Exemplo n.º 21
0
    def test_parallel(self):
        hvd.init()
        # TODO support non-MPI Adasum operation
        # Only do this test if there are GPUs available.
        if not hvd.mpi_enabled() or not torch.cuda.is_available():
            self.skipTest("No GPUs available")

        device = torch.device('cuda:{}'.format(hvd.local_rank()))
        np.random.seed(2)
        torch.manual_seed(2)
        size = hvd.size()
        local_size = hvd.local_size()
        rank = hvd.rank()

        for data_type in self.data_types:
            all_Ns = [size * 20 - 13, size * 2 + 1, size + 2, 2**19]
            tensors = []
            all_qs = []
            for N in all_Ns:
                a = np.random.normal(0, 1, (N, 1)).astype(np.float64)
                r = np.random.normal(0, 1, (size, 1)).astype(np.float64)
                q = np.dot(a, r.T)
                q = q.astype(data_type)
                all_qs.append(q.astype(np.float64))
                tensors.append(q[:, hvd.rank()])

            tensors = list(
                map(lambda x: torch.from_numpy(x).to(device), tensors))

            handles = [
                hvd.allreduce_async(tensor, op=hvd.Adasum)
                for tensor in tensors
            ]

            reduced_tensors = [synchronize(h) for h in handles]

            expected = [np.sum(q, axis=1) / size for q in all_qs]
            all_comp = [
                self.are_close(data_type, e,
                               rt.cpu().numpy())
                for e, rt in zip(expected, reduced_tensors)
            ]
            if np.alltrue(all_comp):
                print('Parallel test passed')
            else:
                for c, e, rt in zip(all_comp, expected, reduced_tensors):
                    if c == False:
                        print('computed: ', rt)
                        print('expected: ', e)
                        print('off by: ', self.diff_ratio(e, rt.cpu().numpy()))
            assert np.alltrue(all_comp)
Exemplo n.º 22
0
    def synchronize(self):
        if hvd.size() > 1:
            for p in self._handles:
                handle = self._handles[p]
                synchronize(handle)
                begin_time = time.time()
                p_size = np.prod(p.size())
                torch.cuda.synchronize()
                begin_comm_time = time.time()
                if self._use_allgather and p_size > 1024:
                    handle = self._handles_val[p]
                    synchronize(handle)
                    name = self._parameter_names.get(p)
                    msg_size = self._compressed_msg_size[name]
                    g_size = p.grad.data.size()
                    p_flatten = p.grad.data.view(-1)
                    p_flatten.zero_()
                    for node_idx in range(hvd.size()):
                        if self._use_gpu:
                            p_flatten[self._compressed_idx[name][node_idx*msg_size : \
                                    node_idx*msg_size + msg_size]] += \
                                    self._compressed_val[name][node_idx]
                    p.grad.data = p.grad.data.view(g_size)
                    if self._debug:
                        diff = torch.sum(self._v_ref[name] - p.grad.data)
                        if torch.abs(diff) > 1e-3:
                            print(diff, name)

                torch.cuda.synchronize()
                end_comm_time = time.time()
                self.pack_time += end_comm_time - begin_comm_time

                torch.cuda.synchronize()
                end_time = time.time()
                self.pruning_time += end_time - begin_time

        self._handles.clear()
        self._handles_val.clear()
Exemplo n.º 23
0
    def forward(self, input, weight, bias, running_mean, running_var, eps,
                momentum):
        input = input.contiguous()

        size = input.numel() // input.size(1)
        count = torch.tensor([size])

        # calculate mean/invstd for input.
        mean, invstd = torch.batch_norm_stats(input, eps)

        count_handle = allgather_async(count.unsqueeze(0),
                                       name='sync_batch_norm.count')
        mean_handle = allgather_async(mean.unsqueeze(0),
                                      name='sync_batch_norm.mean')
        invstd_handle = allgather_async(invstd.unsqueeze(0),
                                        name='sync_batch_norm.invstd')

        # wait on the async communication to finish
        count_all = synchronize(count_handle)
        mean_all = synchronize(mean_handle)
        invstd_all = synchronize(invstd_handle)

        if _SYNC_BN_V2:
            counts_for_bngswc = count_all.view(-1).float().to(input.device)
        else:
            # backwards compatibility
            counts_for_bngswc = count_all.view(-1).tolist()

        # calculate global mean & invstd
        mean, invstd = torch.batch_norm_gather_stats_with_counts(
            input, mean_all, invstd_all, running_mean, running_var, momentum,
            eps, counts_for_bngswc)

        self.save_for_backward(input, weight, mean, invstd, count_all)

        # apply element-wise normalization
        return torch.batch_norm_elemt(input, weight, bias, mean, invstd, eps)
Exemplo n.º 24
0
    def synchronize(self):
        missing_p = self._requires_update - set(self._handles.keys())
        for p in missing_p:
            handle, ctx = self._allreduce_grad_async(p)
            self._handles[p] = (handle, ctx)

        for p, value in self._handles.items():
            handle, ctx = value
            if handle is None:
                handle, ctx = self._allreduce_grad_async(p)
                self._handles[p] = (handle, ctx)
        for p, (handle, _) in self._handles.items():
            output = synchronize(handle)
            self._allreduce_delay[p] = self.backward_passes_per_step
            p.grad.set_(self._compression.decompress(output, ctx))
        self._handles.clear()
    def synchronize(self):
        missing_p = self._requires_update - set(self._handles.keys())
        for p in missing_p:
            handle, ctx = self._broadcast_grad_async(p)
            self._handles[p] = (handle, ctx)

        for p, value in self._handles.items():
            handle, ctx = value
            if handle is None:
                handle, ctx = self._broadcast_grad_async(p)
                self._handles[p] = (handle, ctx)
        for p, (handle, _) in self._handles.items():
            outputs = [synchronize(hd) for hd in handle]
            self._allreduce_delay[p] = self.backward_passes_per_step
            compressor = self._compressors[p]
            if compressor is None:
                p.grad.set_(self._compression.decompress(outputs[0], ctx))
            else:
                p.grad.set_(compressor.decompress(outputs))
        self._handles.clear()

        self._synchronized = True
Exemplo n.º 26
0
    def synchronize(self):

        for p, value in self._handles.items():
            name = self._merged_parameter_names.get(p)
            handle, ctx, density = value
            stime = time.time()
            output = synchronize(handle)
            if self._profiling:
                utils.force_insert_item(self._allreduce_timers, name,
                                        time.time() - stime)
            stime = time.time()

            if self._norm_clip is not None:
                norm_clip = np.sqrt(1.0 / size()) * self._norm_clip
                norm_type = 2.0
                param_norm = output.norm(norm_type)
                total_norm = param_norm.item()
                clip_coef = norm_clip / (total_norm + 1e-6)
                if clip_coef < 1:
                    output.mul_(clip_coef)

            p.set_(output)
            if self._profiling:
                utils.force_insert_item(self._update_times, name,
                                        time.time() - stime)
        if len(self._groups) != len(self._sequential_keys):
            for merged_p, value in self._handles.items():
                new_name = self._merged_parameter_names.get(merged_p)
                tensors = self._pull_from_buffer(new_name, merged_p)
                for n in tensors:
                    p = self._named_parameters.get(n)
                    if settings.FP16:
                        p.grad.set_(tensors[n].data.type(p.grad.type()))
                    else:
                        p.grad.set_(tensors[n].data)
        self.train_iter += 1
        self._handles.clear()
        self._print_profiling()
Exemplo n.º 27
0
    def step(self, closure=None):
        loss = None
        if closure is not None:
            loss = closure()

        missing_p = self._requires_update - set(self._handles.keys())
        for p in missing_p:
            handle, ctx = self._allreduce_grad_async(p)
            self._handles[p] = (handle, ctx)

        for p, (handle, ctx) in self._handles.items():
            # This means step() is called before backward_passes_per_steps finished.
            # We do a synchoronous allreduce here.
            if not handle:
                handle, ctx = self._allreduce_grad_async(p)
                self._handles[p] = (handle, ctx)
            delta = synchronize(handle)
            delta = self._compression.decompress(delta, ctx)
            start = self._starting_models[p]
            start.data.add_(delta.data)
            p.data.copy_(start)
            self._allreduce_delay[p] = self.backward_passes_per_step
        self._handles.clear()
        return loss
Exemplo n.º 28
0
 def synchronize(self):
     for p, value in self._handles.items():
         handle, ctx = value
         output = synchronize(handle)
         p.grad.data.set_(self._compression.decompress(output, ctx))
     self._handles.clear()
Exemplo n.º 29
0
    def synchronize(self):

        num_of_workers = size()
        for p, value in self._handles.items():
            name = self._merged_parameter_names.get(p)
            handle, ctx, density = value
            if self._sparse and density < 1:
                stime = time.time()
                handle_idx = None
                all_indexes = None
                if type(handle) is tuple:
                    handle, handle_idx = handle[0], handle[1]
                output = synchronize(handle)
                if handle_idx is not None:
                    all_indexes = synchronize(handle_idx)

                if self._profiling:
                    utils.force_insert_item(self._allreduce_timers, name,
                                            time.time() - stime)
                stime = time.time()
                new_grad = p.data.view(-1)
                new_grad.fill_(0.0)
                numel = output.size(0)
                real_num_values = numel // num_of_workers
                for i in range(num_of_workers):
                    values_and_indexes = output.data[i *
                                                     real_num_values:(i + 1) *
                                                     real_num_values]
                    if all_indexes is None:
                        values = values_and_indexes
                        indexes = None
                        per_values = values
                        per_values = self._compression.decompress(
                            per_values, p.size())
                        new_grad += per_values.view(-1)
                    else:
                        values = values_and_indexes
                        indexes = all_indexes.data[i *
                                                   real_num_values:(i + 1) *
                                                   real_num_values].long()
                        per_values = values[0:indexes.numel()]
                        per_values = self._compression.decompress(
                            per_values, p.size())
                        new_grad[indexes[0:indexes.numel()]] += per_values
                new_grad /= num_of_workers

                if self._profiling:
                    utils.force_insert_item(self._update_times, name,
                                            time.time() - stime)
            else:
                stime = time.time()
                output = synchronize(handle)
                if self._profiling:
                    utils.force_insert_item(self._allreduce_timers, name,
                                            time.time() - stime)
                stime = time.time()

                if self._norm_clip is not None:
                    norm_clip = np.sqrt(1.0 / size()) * self._norm_clip
                    norm_type = 2.0
                    param_norm = output.norm(norm_type)
                    total_norm = param_norm.item()
                    clip_coef = norm_clip / (total_norm + 1e-6)
                    if clip_coef < 1:
                        output.mul_(clip_coef)
                if self._compression:
                    output = self._compression.decompress(output, p.size())
                p.set_(output)
                if self._profiling:
                    utils.force_insert_item(self._update_times, name,
                                            time.time() - stime)
        if len(self._groups) != len(self._sequential_keys):
            for merged_p, value in self._handles.items():
                new_name = self._merged_parameter_names.get(merged_p)
                tensors = self._pull_from_buffer(new_name, merged_p)
                for n in tensors:
                    p = self._named_parameters.get(n)
                    if self._fp16:
                        p.grad.set_(tensors[n].data.type(p.grad.type()))
                    else:
                        p.grad.set_(tensors[n].data)
        self.train_iter += 1
        self._handles.clear()
        self._print_profiling()
Exemplo n.º 30
0
 def synchronize(self):
     for handle in self._handles.values():
         synchronize(handle)
     self._handles.clear()
Exemplo n.º 31
0
 def synchronize(self):
     for handle in self._handles.values():
         synchronize(handle)
     self._handles.clear()
Exemplo n.º 32
0
    def backward(self, grad_output):
        grad_output = grad_output.contiguous()
        saved_input, weight, mean, invstd, count_all = self.saved_tensors
        need_input_grad, need_weight_grad, need_bias_grad = self.needs_input_grad[
            0:3]

        # calculate local stats as well as grad_weight / grad_bias
        sum_dy, sum_dy_xmu, grad_weight, grad_bias = torch.batch_norm_backward_reduce(
            grad_output, saved_input, mean, invstd, weight, need_input_grad,
            need_weight_grad, need_bias_grad)

        if need_input_grad:
            # synchronizing stats used to calculate input gradient.
            sum_dy_handle = allreduce_async(sum_dy,
                                            op=Sum,
                                            name='sync_batch_norm.sum_dy')
            sum_dy_xmu_handle = allreduce_async(
                sum_dy_xmu, op=Sum, name='sync_batch_norm.sum_dy_xmu')

            # wait on the async communication to finish
            sum_dy = synchronize(sum_dy_handle)
            sum_dy_xmu = synchronize(sum_dy_xmu_handle)

            if _SYNC_BN_V4:
                # from 1.9.0 on we need a count tensor on all devices
                # count_all is calculated as total count across all ranks in forward function
                count_all = count_all.to(dtype=torch.int,
                                         device=grad_output.device)
            elif _SYNC_BN_V2 or _SYNC_BN_V3:
                # before 1.9.0 we need the count as an integer to compute means values
                count = count_all.sum()
            else:
                # before 1.5.0, sum_dy was sum of means from every worker, so we just
                # need to divide it by number of workers
                count = size()

            # backward pass for gradient calculation
            # we are calling into a non-public undocumented function which broke moving to 1.9.0
            # https://github.com/pytorch/pytorch/issues/57900
            if _SYNC_BN_V4:
                # from 1.9.0 on, sums and count parameters expected
                grad_input = torch.batch_norm_backward_elemt(
                    grad_output, saved_input, mean, invstd, weight, sum_dy,
                    sum_dy_xmu, count_all)
            else:
                # before 1.9.0, mean parameters expected, not sums and count
                grad_input = torch.batch_norm_backward_elemt(
                    grad_output, saved_input, mean, invstd, weight,
                    sum_dy / count, sum_dy_xmu / count)
        else:
            grad_input = None

        # synchronizing of grad_weight / grad_bias is not needed as distributed
        # training would handle all reduce.
        if weight is None or not need_weight_grad:
            grad_weight = None

        if weight is None or not need_bias_grad:
            grad_bias = None

        return grad_input, grad_weight, grad_bias, None, None, None, None, None, None