Exemplo n.º 1
0
def problem2():
    """Solution ot part 2 of ps1."""
    # Load the input image.
    src = cv2.imread('./input/ps1-input0.png')
    # Compute the edge image using canny edge method.
    edge_img = cv2.Canny(src, 100, 200)
    # Compute the Hough line transformation.
    H = hough.hough_lines_acc(edge_img)
    # Perform a histogram equalization to enchance the image.
    H_ench = hough.enchance_acc(H)
    # Save the result.
    cv2.imwrite('./output/ps1-2-a-1.png', H_ench)
    # Find peaks in accumulator array H.
    peaks = hough.hough_peaks(H, edge_img.shape, 150, 0)
    # Convert enchanced Hough image from gray to color to draw the peaks.
    H_ench = cv2.cvtColor(H_ench, cv2.COLOR_GRAY2RGB)
    # For each peak, draw a red dot in Hough accumulator array.
    H_peak = H_ench.copy()
    for param, pixel in peaks:
        cv2.circle(H_peak, (pixel[1], pixel[0]), 2, (0, 0, 255), -1)
    # Save the result.
    cv2.imwrite('./output/ps1-2-b-1.png', H_peak)
    # Draw the lines in the original image according to peaks List.
    line_img = hough.hough_lines_draw(src, peaks)
    # Save the result.
    cv2.imwrite('./output/ps1-2-c-1.png', line_img)
    # Uncoment the next 5 lines for display perposes.
    cv2.imshow('Hough Accumulator', H_ench)
    cv2.imshow('Hough Accumulator peaks', H_peak)
    cv2.imshow('line image', line_img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
Exemplo n.º 2
0
def problem3():
    """Solution ot part 3 of ps1."""
    # Load the input image.
    src = cv2.imread('./input/ps1-input0-noise.png')
    # Remove noise with gaussian filter.
    src_smooth = cv2.GaussianBlur(src, (19, 19), 5)
    # Save smouthed image.
    cv2.imwrite('./output/ps1-3-a-1.png', src_smooth)
    # Compute the edge images using canny edge method.
    edge_img = cv2.Canny(src, 100, 200)
    edge_img_smoothed = cv2.Canny(src_smooth, 0, 50)
    # Save the original and smoothed images.
    cv2.imwrite('./output/ps1-3-b-1.png', edge_img)
    cv2.imwrite('./output/ps1-3-b-2.png', edge_img_smoothed)
    # Compute the Hough line transformation.
    H = hough.hough_lines_acc(edge_img_smoothed)
    # Perform a histogram equalization to enchance the image.
    H_ench = hough.enchance_acc(H)
    # Find peaks in accumulator array H.
    peaks = hough.hough_peaks(H, edge_img.shape, 140, 0)
    # Convert enchanced Hough image from gray to color to draw the peaks.
    H_ench = cv2.cvtColor(H_ench, cv2.COLOR_GRAY2RGB)
    # For each peak, draw a red dot in Hough accumulator array.
    H_peak = H_ench.copy()
    for param, pixel in peaks:
        cv2.circle(H_peak, (pixel[1], pixel[0]), 2, (0, 0, 255), -1)
    # Save the result.
    cv2.imwrite('./output/ps1-3-c-1.png', H_peak)
    # Draw the lines in the original image according to peaks List.
    line_img = hough.hough_lines_draw(src, peaks)
    # Save the result.
    cv2.imwrite('./output/ps1-3-c-2.png', line_img)
Exemplo n.º 3
0
def problem6():
    """Solution to part 5 of ps1."""
    # Load image.
    src = cv2.imread('./input/ps1-input2.png')
    # Create a grayscale image from original.
    src_gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
    # smooth image to find edges.
    smoothed = cv2.GaussianBlur(src_gray, (9, 9), 1)
    # extract edges using canny edge algorithm.
    edge_img = auto_canny(smoothed, 2)
    H = hough.hough_lines_acc(edge_img, )
    # Find peak points in Hough accumulator.
    peaks = hough.hough_peaks(H, edge_img.shape, 140)
    # perform histogram equalizaton to Hough accumulator to diplay it.
    H_ench = hough.enchance_acc(H)
    # Convert enchanced Hough image from gray to color to draw the peaks.
    H_ench = cv2.cvtColor(H_ench, cv2.COLOR_GRAY2RGB)
    src_gray = cv2.cvtColor(src_gray, cv2.COLOR_GRAY2RGB)
    # For each peak, draw a red dot in Hough accumulator array.
    H_peak = H_ench.copy()
    # Delete lines with 0 d.
    peaks = [(param, pixel) for param, pixel in peaks if param[0] > 1]
    for param, pixel in peaks:
        cv2.circle(H_peak, (pixel[1], pixel[0]), 1, (0, 0, 255), -1)
    # Draw found lines in the original image.
    line_img = hough.hough_lines_draw(src_gray, peaks)
    # Save the result.
    cv2.imwrite('./test/ps1-4-a-1.png', smoothed)
    cv2.imwrite('./test/ps1-4-b-1.png', edge_img)
    cv2.imwrite('./test/ps1-4-c-1.png', H_peak)
    cv2.imwrite('./test/ps1-4-c-2.png', line_img)
    cv2.waitKey(0)
Exemplo n.º 4
0
    # img_dir = np.arctan2(img_sobely,img_sobelx)
    
    # plt.imshow(img_sobelx, cmap = 'gray', interpolation = 'bicubic')
    # plt.xticks([]), plt.yticks([])
    # plt.show()
    
    img_edges = cv2.Canny(img, 100, 200)
    cv2.imwrite(os.path.join('output', 'ps1-1-a-1.png'), img_edges)

    # Problem 2: Hough Line
    H, theta, rho = hough.hough_lines_acc(img_edges)
    H_norm = (H/np.amax(H)) * 255
    cv2.imwrite(os.path.join('output', 'ps1-2-a-1.png'), H_norm)

    H1 = H_norm.copy()
    peaks = hough.hough_peaks(H1, 8, nHoodSize = (50,50))
    for x,y in peaks:
        cv2.circle(H1, (int(x), int(y)), 10, (255,0,0), 1)
    cv2.imwrite(os.path.join('output', 'ps1-2-b-1.png'), H1)
    
    hough.hough_lines_draw(img, 'ps1-2-c-1.png', peaks, rho, theta)
    
    # Problem 3
    img = cv2.imread(os.path.join('input', 'ps1-input0-noise.png'), 0)
    img_clean = cv2.GaussianBlur(img,(15,15),1)
    cv2.imwrite(os.path.join('output', 'ps1-3-a-1.png'), img_clean)
    
    img_edges1 = cv2.Canny(img, 200, 400)
    cv2.imwrite(os.path.join('output', 'ps1-3-b-1.png'), img_edges1)
    
    img_edges2 = cv2.Canny(img_clean, 200, 400)