def svr_space_2D(): from sklearn.svm import SVR return hp.Obj(SVR)( C = hp.Float( 0.01, 1000, hp.log_scale ), gamma = hp.Float( 10**-5, 1000, hp.log_scale ), )
def forest_regressor_space_3D(): return hp.Obj(Forest)( n_estimators = 100, max_features = hp.Float(0.0001,1), bootstrap = hp.Enum(True, False), algo = hp.Enum('RFR','eTreeR') )
def gbc_space_3D(): return hp.Obj(GBC)( max_depth = hp.Int(1, 15 ), learning_rate = hp.Float( 0.01, 1, hp.log_scale ), max_features = hp.Float( 0.001, 1 ), n_estimators = 100, )
def gbr_space(): from sklearn.ensemble import GradientBoostingRegressor return hp.Obj(GradientBoostingRegressor)( max_depth = hp.Int(1, 15 ), learning_rate = hp.Float( 0.01, 1, hp.log_scale ), n_estimators = 100, )
def forest_classifier_space_3D(n_estimators = 100): return hp.Obj(Forest)( n_estimators = n_estimators, max_features = hp.Float(0.0001,1), bootstrap = hp.Enum(True, False), algo = hp.Enum('RFC','eTreeC') )
def svc_space_1d(): from sklearn.svm import SVC return hp.Obj(SVC)( # C = hp.Float( 0.01, 1000, hp.log_scale ), C = 1000, gamma = hp.Float( 10**-5, 1000, hp.log_scale ), )
def forest_nll_space_4D(n_estimators = 100): return hp.Obj(Forest)( n_estimators = n_estimators, base_prob = hp.Float(1e-8,1e-1, hp.log_scale), max_features = hp.Float(0.0001,1), bootstrap = hp.Enum(True, False), algo = hp.Enum('RFC','eTreeC'), return_proba = True, )