Exemplo n.º 1
0
    def test_rolling1(self):
        # size 3 without unroll
        def test_impl(n):
            df = pd.DataFrame({'A': np.arange(n), 'B': np.random.ranf(n)})
            Ac = df.A.rolling(3).sum()
            return Ac.sum()

        hpat_func = hpat.jit(test_impl)
        n = 121
        self.assertEqual(hpat_func(n), test_impl(n))
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)

        # size 7 with unroll
        def test_impl_2(n):
            df = pd.DataFrame({
                'A': np.arange(n) + 1.0,
                'B': np.random.ranf(n)
            })
            Ac = df.A.rolling(7).sum()
            return Ac.sum()

        hpat_func = hpat.jit(test_impl)
        n = 121
        self.assertEqual(hpat_func(n), test_impl(n))
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 2
0
    def test_nunique_str_parallel(self):
        # TODO: test without file
        def test_impl():
            df = pq.read_table('example.parquet').to_pandas()
            return df.two.nunique()

        hpat_func = hpat.jit(test_impl)
        self.assertEqual(hpat_func(), test_impl())
        self.assertEqual(count_array_REPs(), 0)
        # test compile again for overload related issues
        hpat_func = hpat.jit(test_impl)
        self.assertEqual(hpat_func(), test_impl())
        self.assertEqual(count_array_REPs(), 0)
Exemplo n.º 3
0
    def test_reduce_filter1(self):
        import sys
        dtypes = ['float32', 'float64', 'int32', 'int64']
        funcs = ['sum', 'prod', 'min', 'max', 'argmin', 'argmax']
        for (dtype, func) in itertools.product(dtypes, funcs):
            # loc allreduce doesn't support int64 on windows
            if (sys.platform.startswith('win')
                    and dtype == 'int64'
                    and func in ['argmin', 'argmax']):
                continue
            func_text = """def f(A):
                A = A[A>5]
                return A.{}()
            """.format(func)
            loc_vars = {}
            exec(func_text, {'np': np}, loc_vars)
            test_impl = loc_vars['f']

            hpat_func = hpat.jit(locals={'A:input': 'distributed'})(test_impl)
            n = 21
            start, end = get_start_end(n)
            np.random.seed(0)
            A = np.random.randint(0, 10, n).astype(dtype)
            np.testing.assert_almost_equal(
                hpat_func(A[start:end]), test_impl(A), decimal=3,
                err_msg="{} on {}".format(func, dtype))
            self.assertEqual(count_array_REPs(), 0)
            self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 4
0
    def test_shape(self):
        def test_impl(N):
            return np.ones(N).shape[0]

        hpat_func = hpat.jit(test_impl)
        n = 128
        np.testing.assert_allclose(hpat_func(n), test_impl(n))
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 5
0
    def test_pq_float_no_nan(self):
        def test_impl():
            df = pq.read_table('example.parquet').to_pandas()
            return df.four.sum()

        hpat_func = hpat.jit(test_impl)
        np.testing.assert_almost_equal(hpat_func(), test_impl())
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 6
0
    def test_unique_str_parallel(self):
        # TODO: test without file
        def test_impl():
            df = pq.read_table('example.parquet').to_pandas()
            return (df.two.unique() == 'foo').sum()

        hpat_func = hpat.jit(test_impl)
        self.assertEqual(hpat_func(), test_impl())
        self.assertEqual(count_array_REPs(), 0)
Exemplo n.º 7
0
    def test_agg_parallel_str(self):
        def test_impl():
            df = pq.read_table("groupby3.pq").to_pandas()
            A = df.groupby('A')['B'].agg(lambda x: x.max() - x.min())
            return A.sum()

        hpat_func = hpat.jit(test_impl)
        self.assertEqual(hpat_func(), test_impl())
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 8
0
    def test_df_values_parallel1(self):
        def test_impl(n):
            df = pd.DataFrame({'A': np.ones(n), 'B': np.arange(n)})
            return df.values.sum()

        hpat_func = hpat.jit(test_impl)
        n = 11
        np.testing.assert_array_equal(hpat_func(n), test_impl(n))
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 9
0
    def test_np_io2(self):
        # parallel version
        def test_impl():
            A = np.fromfile("np_file1.dat", np.float64)
            return A.sum()

        hpat_func = hpat.jit(test_impl)
        np.testing.assert_almost_equal(hpat_func(), test_impl())
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 10
0
    def test_pq_str_with_nan_par_multigroup(self):
        def test_impl():
            df = pq.read_table('example2.parquet').to_pandas()
            A = df.five.values == 'foo'
            return A.sum()

        hpat_func = hpat.jit(test_impl)
        np.testing.assert_almost_equal(hpat_func(), test_impl())
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 11
0
    def test_shape1(self):
        def test_impl(n):
            df = pd.DataFrame({'A': np.ones(n, np.int64), 'B': np.random.ranf(n)})
            return df.shape

        hpat_func = hpat.jit(test_impl)
        n = 11
        self.assertEqual(hpat_func(n), test_impl(n))
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 12
0
    def test_pd_read_parquet(self):
        def test_impl():
            df = pd.read_parquet('kde.parquet')
            X = df['points']
            return X.sum()

        hpat_func = hpat.jit(test_impl)
        np.testing.assert_almost_equal(hpat_func(), test_impl())
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 13
0
    def test_quantile_parallel_int(self):
        def test_impl(n):
            df = pd.DataFrame({'A': np.arange(0, n, 1, np.int32)})
            return df.A.quantile(.25)

        hpat_func = hpat.jit(test_impl)
        n = 1001
        np.testing.assert_almost_equal(hpat_func(n), test_impl(n))
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 14
0
    def test_series_dist_input1(self):
        def test_impl(S):
            return S.max()
        hpat_func = hpat.jit(distributed={'S'})(test_impl)

        n = 111
        S = pd.Series(np.arange(n))
        start, end = get_start_end(n)
        self.assertEqual(hpat_func(S[start:end]), test_impl(S))
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 15
0
    def test_whole_slice(self):
        def test_impl(N):
            X = np.ones((N, 4))
            X[:, 3] = (X[:, 3]) / (np.max(X[:, 3]) - np.min(X[:, 3]))
            return X.sum()

        hpat_func = hpat.jit(test_impl)
        n = 128
        np.testing.assert_allclose(hpat_func(n), test_impl(n))
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 16
0
    def test_pq_read(self):
        def test_impl():
            t = pq.read_table('kde.parquet')
            df = t.to_pandas()
            X = df['points']
            return X.sum()

        hpat_func = hpat.jit(test_impl)
        np.testing.assert_almost_equal(hpat_func(), test_impl())
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 17
0
    def test_h5_read_parallel(self):
        def test_impl():
            f = h5py.File("lr.hdf5", "r")
            X = f['points'][:]
            Y = f['responses'][:]
            return X.sum() + Y.sum()

        hpat_func = hpat.jit(test_impl)
        np.testing.assert_almost_equal(hpat_func(), test_impl())
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 18
0
    def test_strided_getitem(self):
        def test_impl(N):
            A = np.ones(N)
            B = A[::7]
            return B.sum()

        hpat_func = hpat.jit(test_impl)
        n = 128
        np.testing.assert_allclose(hpat_func(n), test_impl(n))
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 19
0
    def test_agg_parallel_std(self):
        def test_impl(n):
            df = pd.DataFrame({'A': np.ones(n, np.int64), 'B': np.arange(n)})
            A = df.groupby('A')['B'].std()
            return A.sum()

        hpat_func = hpat.jit(test_impl)
        n = 11
        self.assertEqual(hpat_func(n), test_impl(n))
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 20
0
    def test_filter3(self):
        def test_impl(n):
            df = pd.DataFrame({'A': np.arange(n) + n, 'B': np.arange(n)**2})
            df1 = df.iloc[(df.A > .5).values]
            return np.sum(df1.B)

        hpat_func = hpat.jit(test_impl)
        n = 11
        self.assertEqual(hpat_func(n), test_impl(n))
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 21
0
    def test_describe(self):
        def test_impl(n):
            df = pd.DataFrame({'A': np.arange(0, n, 1, np.float64)})
            return df.A.describe()

        hpat_func = hpat.jit(test_impl)
        n = 1001
        hpat_func(n)
        # XXX: test actual output
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 22
0
    def test_setitem2(self):
        def test_impl(N):
            A = np.arange(10) + 1.0
            A[0:4] = 30
            return A.sum()

        hpat_func = hpat.jit(test_impl)
        n = 128
        np.testing.assert_allclose(hpat_func(n), test_impl(n))
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 23
0
    def test_concat_series_str(self):
        def test_impl():
            df1 = pq.read_table('example.parquet').to_pandas()
            df2 = pq.read_table('example.parquet').to_pandas()
            A3 = pd.concat([df1.two, df2.two])
            return (A3 == 'foo').sum()

        hpat_func = hpat.jit(test_impl)
        self.assertEqual(hpat_func(), test_impl())
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 24
0
    def test_filter2(self):
        def test_impl(n):
            df = pd.DataFrame({'A': np.ones(n), 'B': np.ones(n)})
            df1 = df.loc[df.A > .5]
            return np.sum(df1.B)

        hpat_func = hpat.jit(test_impl)
        n = 11
        self.assertEqual(hpat_func(n), test_impl(n))
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 25
0
    def test_rolling2(self):
        def test_impl(n):
            df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)})
            df['moving average'] = df.A.rolling(window=5, center=True).mean()
            return df['moving average'].sum()

        hpat_func = hpat.jit(test_impl)
        n = 121
        self.assertEqual(hpat_func(n), test_impl(n))
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 26
0
    def test_1D_Var_len(self):
        def test_impl(n):
            df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n) + 1.0})
            df1 = df[df.A > 5]
            return len(df1.B)

        hpat_func = hpat.jit(test_impl)
        n = 11
        self.assertEqual(hpat_func(n), test_impl(n))
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 27
0
    def test_shift2(self):
        def test_impl(n):
            df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)})
            Ac = df.A.pct_change()
            return Ac.sum()

        hpat_func = hpat.jit(test_impl)
        n = 11
        self.assertEqual(hpat_func(n), test_impl(n))
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 28
0
    def test_agg_parallel_as_index(self):
        def test_impl(n):
            df = pd.DataFrame({'A': np.ones(n, np.int64), 'B': np.arange(n)})
            df2 = df.groupby('A', as_index=False).max()
            return df2.A.sum()

        hpat_func = hpat.jit(test_impl)
        n = 11
        self.assertEqual(hpat_func(n), test_impl(n))
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 29
0
    def test_rolling3(self):
        def test_impl(n):
            df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)})
            Ac = df.A.rolling(3, center=True).apply(lambda a: a[0]+2*a[1]+a[2])
            return Ac.sum()

        hpat_func = hpat.jit(test_impl)
        n = 121
        self.assertEqual(hpat_func(n), test_impl(n))
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
Exemplo n.º 30
0
    def test_column_getitem1(self):
        def test_impl(n):
            df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)})
            Ac = df['A'].values
            return Ac.sum()

        hpat_func = hpat.jit(test_impl)
        n = 11
        self.assertEqual(hpat_func(n), test_impl(n))
        self.assertEqual(count_array_REPs(), 0)
        self.assertEqual(count_parfor_REPs(), 0)
        self.assertEqual(count_parfor_OneDs(), 1)