Exemplo n.º 1
0
def test_annot_list_to_csv(tmp_output_dir, test_data_dir):
    """compares csv created by annot_list_to_csv
    with correctly generated csv saved in hvc/tests/test_data
    """
    cbin_dir = os.path.join(test_data_dir,
                            os.path.normpath('cbins/gy6or6/032312/'))
    notmat_list = glob(os.path.join(cbin_dir, '*.not.mat'))
    # below, sorted() so it's the same order on different platforms
    notmat_list = sorted(notmat_list)
    annot_list = []
    for notmat in notmat_list:
        annot_list.append(annotation.notmat_to_annot_dict(notmat))
    csv_filename = os.path.join(str(tmp_output_dir), 'test.csv')
    # below, set basename to True so we can easily run tests on any system without
    # worrying about where audio files are relative to root of directory tree
    annotation.annot_list_to_csv(annot_list, csv_filename, basename=True)
    assert os.path.isfile(csv_filename)
    test_rows = []
    with open(csv_filename, 'r', newline='') as csvfile:
        reader = csv.reader(csvfile)
        for row in reader:
            test_rows.append(row)

    csv_to_compare_with = os.path.join(
        test_data_dir, os.path.normpath('csv/gy6or6_032312.csv'))
    compare_rows = []
    with open(csv_to_compare_with, 'r', newline='') as csvfile:
        reader = csv.reader(csvfile)
        for row in reader:
            compare_rows.append(row)
    for test_row, compare_row in zip(test_rows, compare_rows):
        assert test_row == compare_row
Exemplo n.º 2
0
    def test_song_w_nan(self, has_window_error, hvc_source_dir):
        """tests that features_arr[ind,:] == np.nan
        where ind is the row corresponding to
        a syllable from a song
        for which a spectrogram could not be generated, and
        so single-syllable features cannot be extracted from it
        """

        with open(os.path.join(hvc_source_dir,
                               os.path.normpath('parse/feature_groups.yml'))
                  ) as ftr_grp_yaml:
            valid_feature_groups_dict = yaml.load(ftr_grp_yaml)
        spect_params = refs_dict['koumura']
        segment_params = {
            'threshold': 1500,
            'min_syl_dur': 0.01,
            'min_silent_dur': 0.006
        }
        svm_features = valid_feature_groups_dict['svm']
        fe = hvc.features.extract.FeatureExtractor(spect_params=spect_params,
                                               segment_params=segment_params,
                                               feature_list=svm_features)

        filename, index = has_window_error
        annotation_dict = annotation.notmat_to_annot_dict(filename + '.not.mat')
        with pytest.warns(UserWarning):
             extract_dict = fe._from_file(filename=filename,
                                          file_format='evtaf',
                                          labels_to_use='iabcdefghjk',
                                          labels=annotation_dict['labels'],
                                          onsets_Hz=annotation_dict['onsets_Hz'],
                                          offsets_Hz=annotation_dict['offsets_Hz'])
        ftr_arr = extract_dict['features_arr']
        assert np.alltrue(np.isnan(ftr_arr[19, :]))
Exemplo n.º 3
0
def test_csv_to_annot_list(test_data_dir):
    csv_fname = os.path.join(test_data_dir,
                             os.path.normpath('csv/gy6or6_032312.csv'))
    # convert csv to annotation list -- this is what we're testing
    annot_list_from_csv = annotation.csv_to_annot_list(csv_fname)
    cbin_dir = os.path.join(test_data_dir,
                            os.path.normpath('cbins/gy6or6/032312/'))

    # get what should be the same annotation list from .not.mat files
    # to compare with what we got from the csv
    notmat_list = glob(os.path.join(cbin_dir, '*.not.mat'))
    # below, sorted() so it's the same order on different platforms
    notmat_list = sorted(notmat_list)
    annot_list_from_notmats = []
    for notmat in notmat_list:
        annot_list_from_notmats.append(
            annotation.notmat_to_annot_dict(notmat, basename=True))

    # make sure everything is the same in the two annotation lists
    for from_csv, from_notmat in zip(annot_list_from_csv,
                                     annot_list_from_notmats):
        for from_csv_key, from_csv_val in from_csv.items():
            if type(from_csv_val) == str:
                assert from_csv_val == from_notmat[from_csv_key]
            elif type(from_csv_val) == np.ndarray:
                # hacky platform-agnostic way to say "if integer"
                if from_csv_val.dtype == np.asarray(int(1)).dtype:
                    assert np.array_equal(from_csv_val,
                                          from_notmat[from_csv_key])
                # hacky platform-agnostic way to say "if float"
                elif from_csv_val.dtype == np.asarray((1.)).dtype:
                    assert np.allclose(from_csv[from_csv_key],
                                       from_notmat[from_csv_key])
    def a_syl(self, test_data_dir):
        """make a syl object

        Should get fancy later and have this return random syls
        for more thorough testing

        Returns
        -------
        a_syl: a syl object
            used to text feature extraction functions
        """

        songfiles_dir = os.path.join(
            test_data_dir, os.path.normpath('cbins/gy6or6/032412/*.cbin'))
        songfiles_list = glob(songfiles_dir)
        first_song = songfiles_list[0]
        raw_audio, samp_freq = hvc.evfuncs.load_cbin(first_song)

        first_song_notmat = first_song + '.not.mat'
        annotation_dict = annotation.notmat_to_annot_dict(first_song_notmat)

        spect_params = refs_dict['tachibana']
        spect_maker = Spectrogram(**spect_params)

        syls = make_syls(raw_audio, samp_freq, spect_maker,
                         annotation_dict['labels'],
                         annotation_dict['onsets_Hz'],
                         annotation_dict['offsets_Hz'])

        return syls[0]
Exemplo n.º 5
0
def test_notmat_to_annot_dict(test_data_dir):
    notmat = os.path.join(
        test_data_dir,
        os.path.normpath('cbins/gy6or6/032412/'
                         'gy6or6_baseline_240312_0811.1165.cbin.not.mat'))
    annot_dict = annotation.notmat_to_annot_dict(notmat)
    for fieldname, fieldtype in ANNOT_DICT_FIELDNAMES.items():
        assert fieldname in annot_dict
        assert type(annot_dict[fieldname]) == fieldtype
Exemplo n.º 6
0
    def test_cbin(self, hvc_source_dir, test_data_dir):
        """tests all features on a single .cbin file"""

        spect_params = refs_dict['tachibana']
        segment_params = {
            'threshold': 1500,
            'min_syl_dur': 0.01,
            'min_silent_dur': 0.006
        }
        with open(os.path.join(
                hvc_source_dir,
                os.path.normpath('parse/feature_groups.yml'))) as ftr_grp_yaml:
            ftr_grps = yaml.load(ftr_grp_yaml)

        cbin = os.path.join(test_data_dir,
                            os.path.normpath(
                                'cbins/gy6or6/032412/'
                                'gy6or6_baseline_240312_0811.1165.cbin'))
        annotation_dict = annotation.notmat_to_annot_dict(cbin + '.not.mat')

        for feature_list in (ftr_grps['knn'],
                             ftr_grps['svm'],
                             ['flatwindow'],
                             ):
            fe = hvc.features.extract.FeatureExtractor(spect_params=spect_params,
                                                       segment_params=segment_params,
                                                       feature_list=feature_list)

            extract_dict = fe._from_file(cbin,
                                         file_format='evtaf',
                                         labels_to_use='iabcdefghjk',
                                         labels=annotation_dict['labels'],
                                         onsets_Hz=annotation_dict['onsets_Hz'],
                                         offsets_Hz=annotation_dict['offsets_Hz']
                                         )

            if 'features_arr' in extract_dict:
                ftrs = extract_dict['features_arr']
                feature_inds = extract_dict['feature_inds']
                # _from_file should return an ndarray
                assert type(ftrs) == np.ndarray
                # and the number of columns should equal tbe number of feature indices
                # that _from_file determined there were (not necessarily equal to the
                # number of features in the list; some features such as the spectrogram
                # averaged over columns occupy several columns
                assert ftrs.shape[-1] == feature_inds.shape[-1]
                # however the **unique** number of features in feature indices should be
                # equal to the number of items in the feature list
                assert np.unique(feature_inds).shape[-1] == len(feature_list)
            elif 'neuralnet_inputs_dict' in extract_dict:
                neuralnet_ftrs = extract_dict['neuralnet_inputs_dict']
                assert type(neuralnet_ftrs) == dict
            else:
                raise ValueError('neither features_arr or neuralnet_inputs_dict '
                                 'were returned by FeatureExtractor')
Exemplo n.º 7
0
 def test_window_error_set_to_nan(self, has_window_error):
     """check that, if an audio file raises a window error for Spectrogram.make
     for a certain syllable, then that syllable's spectrogram is set to np.nan
     """
     filename, index = has_window_error
     raw_audio, samp_freq = hvc.evfuncs.load_cbin(filename)
     spect_params = hvc.parse.ref_spect_params.refs_dict['koumura']
     spect_maker = hvc.audiofileIO.Spectrogram(**spect_params)
     annotation_dict = annotation.notmat_to_annot_dict(filename +
                                                       '.not.mat')
     syls = hvc.audiofileIO.make_syls(raw_audio, samp_freq, spect_maker,
                                      annotation_dict['labels'],
                                      annotation_dict['onsets_Hz'],
                                      annotation_dict['offsets_Hz'])
     assert syls[index].spect is np.nan
Exemplo n.º 8
0
    def test_make_syls(self, test_data_dir):
        """test make_syls function
        """

        segment_params = {
            'threshold': 1500,
            'min_syl_dur': 0.01,
            'min_silent_dur': 0.006
        }

        # test that make_syl_spects works
        # with spect params given individually
        cbin = os.path.join(
            test_data_dir,
            os.path.normpath('cbins/gy6or6/032412/'
                             'gy6or6_baseline_240312_0811.1165.cbin'))
        raw_audio, samp_freq = hvc.evfuncs.load_cbin(cbin)
        spect_params = {
            'nperseg': 512,
            'noverlap': 480,
            'freq_cutoffs': [1000, 8000]
        }
        labels_to_use = 'iabcdefghjk'
        spect_maker = hvc.audiofileIO.Spectrogram(**spect_params)
        annot_dict = annotation.notmat_to_annot_dict(cbin + '.not.mat')
        syls = hvc.audiofileIO.make_syls(raw_audio,
                                         samp_freq,
                                         spect_maker,
                                         annot_dict['labels'],
                                         annot_dict['onsets_Hz'],
                                         annot_dict['offsets_Hz'],
                                         labels_to_use=labels_to_use)

        wav = os.path.join(test_data_dir,
                           os.path.normpath('koumura/Bird0/Wave/0.wav'))
        samp_freq, raw_audio = wavfile.read(wav)
        annot_dict = hvc.koumura.load_song_annot(wav)
        labels_to_use = '0123456'
        syls = hvc.audiofileIO.make_syls(raw_audio,
                                         samp_freq,
                                         spect_maker,
                                         annot_dict['labels'],
                                         annot_dict['onsets_Hz'],
                                         annot_dict['offsets_Hz'],
                                         labels_to_use=labels_to_use)

        # test make_syl_spects works with 'ref' set to 'tachibana'
        raw_audio, samp_freq = hvc.evfuncs.load_cbin(cbin)
        spect_params = hvc.parse.ref_spect_params.refs_dict['tachibana']
        spect_maker = hvc.audiofileIO.Spectrogram(**spect_params)
        annot_dict = annotation.notmat_to_annot_dict(cbin + '.not.mat')
        labels_to_use = 'iabcdefghjk'
        syls = hvc.audiofileIO.make_syls(raw_audio,
                                         samp_freq,
                                         spect_maker,
                                         annot_dict['labels'],
                                         annot_dict['onsets_Hz'],
                                         annot_dict['offsets_Hz'],
                                         labels_to_use=labels_to_use)

        wav = os.path.join(test_data_dir,
                           os.path.normpath('koumura/Bird0/Wave/0.wav'))
        samp_freq, raw_audio = wavfile.read(wav)
        labels_to_use = '0123456'
        annot_dict = hvc.koumura.load_song_annot(wav)
        syls = hvc.audiofileIO.make_syls(raw_audio,
                                         samp_freq,
                                         spect_maker,
                                         annot_dict['labels'],
                                         annot_dict['onsets_Hz'],
                                         annot_dict['offsets_Hz'],
                                         labels_to_use=labels_to_use)

        # test make_syl_spects works with 'ref' set to 'koumura'
        raw_audio, samp_freq = hvc.evfuncs.load_cbin(cbin)
        spect_params = hvc.parse.ref_spect_params.refs_dict['koumura']
        spect_maker = hvc.audiofileIO.Spectrogram(**spect_params)
        annot_dict = annotation.notmat_to_annot_dict(cbin + '.not.mat')
        labels_to_use = 'iabcdefghjk'
        syls = hvc.audiofileIO.make_syls(raw_audio,
                                         samp_freq,
                                         spect_maker,
                                         annot_dict['labels'],
                                         annot_dict['onsets_Hz'],
                                         annot_dict['offsets_Hz'],
                                         labels_to_use=labels_to_use)

        wav = os.path.join(test_data_dir,
                           os.path.normpath('koumura/Bird0/Wave/0.wav'))
        samp_freq, raw_audio = wavfile.read(wav)
        labels_to_use = '0123456'
        annot_dict = hvc.koumura.load_song_annot(wav)
        syls = hvc.audiofileIO.make_syls(raw_audio,
                                         samp_freq,
                                         spect_maker,
                                         annot_dict['labels'],
                                         annot_dict['onsets_Hz'],
                                         annot_dict['offsets_Hz'],
                                         labels_to_use=labels_to_use)

        # test that make_syl_spects works the same way when
        # using evsonganaly
        raw_audio, samp_freq = hvc.evfuncs.load_cbin(cbin)
        spect_params = hvc.parse.ref_spect_params.refs_dict['evsonganaly']
        spect_maker = hvc.audiofileIO.Spectrogram(**spect_params)
        annot_dict = annotation.notmat_to_annot_dict(cbin + '.not.mat')
        labels_to_use = 'iabcdefghjk'
        syls = hvc.audiofileIO.make_syls(raw_audio,
                                         samp_freq,
                                         spect_maker,
                                         annot_dict['labels'],
                                         annot_dict['onsets_Hz'],
                                         annot_dict['offsets_Hz'],
                                         labels_to_use=labels_to_use)

        wav = os.path.join(test_data_dir,
                           os.path.normpath('koumura/Bird0/Wave/0.wav'))
        samp_freq, raw_audio = wavfile.read(wav)
        annot_dict = hvc.koumura.load_song_annot(wav)
        labels_to_use = '0123456'
        syls = hvc.audiofileIO.make_syls(raw_audio,
                                         samp_freq,
                                         spect_maker,
                                         annot_dict['labels'],
                                         annot_dict['onsets_Hz'],
                                         annot_dict['offsets_Hz'],
                                         labels_to_use=labels_to_use)