Exemplo n.º 1
0
    def get_plot(hvf_image_gray, y_ratio, y_size, x_ratio, x_size, plot_type,
                 icon_type):

        plot_image = Image_Utils.slice_image(hvf_image_gray, y_ratio, y_size,
                                             x_ratio, x_size)

        hvf_image_gray_process = Image_Utils.preprocess_image(
            hvf_image_gray.copy())
        plot_image_process = Image_Utils.slice_image(hvf_image_gray_process,
                                                     y_ratio, y_size, x_ratio,
                                                     x_size)

        # Get bounding box from processed image:
        top_left, w, h = Hvf_Plot_Array.get_bounding_box(plot_image_process)
        bottom_right = (top_left[0] + w, top_left[1] + h)

        # Need to specifically handle raw value plot - can have a discontinuity in the
        # x axis (with triangle icon), which causes a mis-fit. So need to fill in x-axis
        # and try again

        cv2.line(plot_image_process, (top_left[0], top_left[1] + int(h / 2)),
                 (top_left[0] + w, top_left[1] + int(h / 2)), (0),
                 max(int(h * 0.015), 1))

        top_left, w, h = Hvf_Plot_Array.get_bounding_box(plot_image_process)
        bottom_right = (top_left[0] + w, top_left[1] + h)

        # For debugging: Draw rectangle around the plot - MUST BE COMMENTED OUT, BECAUSE
        # IT WILL INTERFERE WITH LATER PLOT EXTRACTIONS
        #cv2.rectangle(plot_image, top_left, bottom_right, 0, 2)

        # Debug function for showing the plot:
        #show_plot_func = (lambda : cv2.imshow("Bound rect for plot " + plot_type, plot_image))
        #Logger.get_logger().log_function(Logger.DEBUG_FLAG_DEBUG, show_plot_func);
        #cv2.waitKey();

        # Slice out the axes plot on the original:
        tight_plot = plot_image[top_left[1]:(top_left[1] + h),
                                top_left[0]:(top_left[0] + w)]

        # And extract the values from the array:
        plot_array = Hvf_Plot_Array.extract_values_from_plot(
            tight_plot, plot_type, icon_type)

        # Return the array:
        return plot_array, tight_plot
Exemplo n.º 2
0
    def is_pattern_not_shown(hvf_image_gray, y_ratio, y_size, x_ratio, x_size):

        # Calculate height/width for calculation later:
        height = np.size(hvf_image_gray, 0)
        width = np.size(hvf_image_gray, 1)

        # Slice image:
        hvf_image_gray = Image_Utils.preprocess_image(hvf_image_gray)
        sliced_img = Image_Utils.slice_image(hvf_image_gray, y_ratio, y_size,
                                             x_ratio, x_size)

        # Try to detect a bounding box:
        top_left, w, h = Hvf_Plot_Array.get_bounding_box(sliced_img)

        # Calculate the relative (percentage) size of the bounding box compared to slice:
        box_ratio_w = w / (x_size * width)
        box_ratio_h = h / (y_size * height)

        # Define a threshold below which if the size ratio is, we declare that the pattern
        # is not detected:
        threshold_size = 0.3

        return (box_ratio_w < threshold_size or box_ratio_h < threshold_size)
    def clean_slice(slice):

        # Clean up borders - sometimes straggler pixels come along
        slice_w = np.size(slice, 1)

        slice = slice[:, 1:slice_w - 1]
        slice = cv2.copyMakeBorder(slice, 0, 0, 1, 1, cv2.BORDER_REPLICATE)

        # Crop the characters to remove excess white:
        x0, x1, y0, y1 = Image_Utils.crop_white_border(slice)

        # Possible we have a fully blank slice, so only crop if there is something
        if (x0 < x1 and y0 < y1):
            slice = slice[y0:y1, x0:x1]

        return slice
Exemplo n.º 4
0
    def perform_ocr(img):

        # First, preprocessor the image:
        img = Image_Utils.preprocess_image(img)

        # Next, convert image to python PIL (because pytesseract using PIL):
        img_pil = Image.fromarray(img)

        if not Ocr_Utils.OCR_API_HANDLE:
            Ocr_Utils.OCR_API_HANDLE = PyTessBaseAPI(psm=PSM.SINGLE_COLUMN)
            #Ocr_Utils.OCR_API_HANDLE = PyTessBaseAPI(psm=PSM.SINGLE_BLOCK)

        Ocr_Utils.OCR_API_HANDLE.SetImage(img_pil)
        text = Ocr_Utils.OCR_API_HANDLE.GetUTF8Text()

        # Return extracted text:
        return text
Exemplo n.º 5
0
    def delete_plot_axes(plot_image):

        w = np.size(plot_image, 1)
        h = np.size(plot_image, 0)

        # Mask out all but central ~5% of horizontal and vertical, to prepare to
        # remove axes_size
        mask = np.zeros((h, w, 1), np.uint8)
        mask = np.full(plot_image.shape, 255, np.uint8)

        # Draw axes in the middle (to allow mask to match template on)
        cv2.line(mask, (int(w / 2), 0), (int(w / 2), h), (0), int(w * 0.03))
        cv2.line(mask, (0, int(h / 2)), (w, int(h / 2)), (0), int(h * 0.03))

        # Mask out all but central 5%:
        masked_axes = cv2.bitwise_or(plot_image, mask)

        masked_axes = Image_Utils.delete_stray_marks(masked_axes, 0.0001,
                                                     0.001)

        return_image = cv2.bitwise_or(cv2.bitwise_not(masked_axes), plot_image)

        return return_image
Exemplo n.º 6
0
    def get_perc_plot_element(plot_element):

        # Declare our return value:
        ret_val = Hvf_Perc_Icon.PERC_NO_VALUE

        # What is the total plot size?
        plot_area = np.size(plot_element, 0) * np.size(plot_element, 1)

        # Delete stray marks; filters out specks based on size compared to global element
        # and relative to largest contour
        plot_threshold = 0.005
        relative_threshold = 0.005
        plot_element = Image_Utils.delete_stray_marks(plot_element,
                                                      plot_threshold,
                                                      relative_threshold)

        # First, crop the white border out of the element to get just the core icon:
        x0, x1, y0, y1 = Image_Utils.crop_white_border(plot_element)

        # Calculate height and width:
        h = y1 - y0
        w = x1 - x0

        # If our bounding indices don't catch any borders (ie, x0 > x1) then its must be an
        # empty element:
        if (w < 0):
            ret_val = Hvf_Perc_Icon.PERC_NO_VALUE

        # Finding 'normal' elements is tricky because the icon is small (scaling doesn't
        # work as easily for it) and it tends to get false matching with other icons
        # However, its size is very different compared to the other icons, so just detect
        # it separately
        # If the cropped bounding box is less than 20% of the overall box, highly likely
        # normal icon
        elif ((h / np.size(plot_element, 0)) < 0.20):

            ret_val = Hvf_Perc_Icon.PERC_NORMAL

        else:

            # Grab our element icon:
            element_cropped = plot_element[y0:1 + y1, x0:1 + x1]

            # Now, we template match against all icons and look for best fit:
            best_match = None
            best_perc = None

            for ii in range(len(Hvf_Perc_Icon.template_perc_list)):

                # Scale up the plot element or perc icon, whichever is smaller
                # (meaning, scale up so they're equal, don't scale down - keep as much
                # data as we can)

                # Grab our perc icon:
                perc_icon = Hvf_Perc_Icon.template_perc_list[ii]

                min_val, max_val, min_loc, max_loc = Hvf_Perc_Icon.do_template_matching(
                    plot_element, w, h, perc_icon)

                # Check to see if this is our best fit yet:
                if (best_match is None or min_val < best_match):
                    # This is best fit - record the value and the icon type
                    best_match = min_val
                    best_perc = Hvf_Perc_Icon.enum_perc_list[ii]

                # Debug strings for matching the enum:
                debug_string = "Matching enum " + str(
                    Hvf_Perc_Icon.enum_perc_list[ii]) + "; match : " + str(
                        min_val)
                Logger.get_logger().log_msg(Logger.DEBUG_FLAG_DEBUG,
                                            debug_string)

            ret_val = best_perc

            # Now we need to ensure that all declared 5-percentile icons are true, because
            # this program often mixes up between 5-percentile and half-percentile

            if (ret_val == Hvf_Perc_Icon.PERC_5_PERCENTILE):

                # Check for contours here - we know that the 5 percentile has multiple small contours
                plot_element = cv2.bitwise_not(plot_element)

                # Find contours. Note we are using RETR_EXTERNAL, meaning no children contours (ie
                # contours within contours)
                contours, hierarchy = cv2.findContours(plot_element,
                                                       cv2.RETR_EXTERNAL,
                                                       cv2.CHAIN_APPROX_SIMPLE)

                # Now add up all the contour area
                total_cnt_area = 0
                for cnt in contours:
                    total_cnt_area = total_cnt_area + cv2.contourArea(cnt)

                # Now compare to our cropped area
                # In optimal scenario, 5-percentile takes up 25% of area; half-percentile essentially 100%
                # Delineate on 50%
                AREA_PERCENTAGE_CUTOFF = 0.5
                area_percentage = total_cnt_area / (w * h)

                Logger.get_logger().log_msg(
                    Logger.DEBUG_FLAG_DEBUG,
                    "Recheck matching betwen 5-percentile and half-percentile")
                Logger.get_logger().log_msg(
                    Logger.DEBUG_FLAG_DEBUG,
                    "Total contour area percentage: " + str(area_percentage))

                # Check to see which is better. Because we are inverting, check max value
                if (area_percentage > AREA_PERCENTAGE_CUTOFF):

                    # Half percentile is a better fit - switch our match
                    ret_val = Hvf_Perc_Icon.PERC_HALF_PERCENTILE

                    # Declare as such:
                    debug_string = "Correction: switching from 5-percentile to half-percentile"
                    Logger.get_logger().log_msg(Logger.DEBUG_FLAG_DEBUG,
                                                debug_string)

            # Debug strings for bounding box:
            debug_bound_box_string = "Bounding box: " + str(x0) + "," + str(
                y0) + " ; " + str(x1) + "," + str(y1)
            Logger.get_logger().log_msg(Logger.DEBUG_FLAG_DEBUG,
                                        debug_bound_box_string)
            debug_bound_box_dim_string = "Bounding box dimensions: " + str(
                w) + " , " + str(h)
            Logger.get_logger().log_msg(Logger.DEBUG_FLAG_DEBUG,
                                        debug_bound_box_dim_string)

            # And debug function for showing the cropped element:
            show_cropped_element_func = (lambda: cv2.imshow(
                'cropped ' + str(Hvf_Perc_Icon.i), element_cropped))
            Logger.get_logger().log_function(Logger.DEBUG_FLAG_DEBUG,
                                             show_cropped_element_func)
            Hvf_Perc_Icon.i = Hvf_Perc_Icon.i + 1

        return ret_val
    def get_value_plot_element(plot_element, plot_element_backup, plot_type):
        # Declare return value
        return_val = 0

        # CV2 just slices images and returns the native image. We mess with the pixels so
        # for cleanliness, just copy it over:
        plot_element = plot_element.copy()

        # First, clean up any small noisy pixels by eliminating small contours
        # Tolerance for stray marks is different depending on plot type

        # Relative to largest contour:
        plot_threshold = 0
        relative_threshold = 0

        if (plot_type == "raw"):
            plot_threshold = 0.005
            relative_threshold = 0.1
        else:
            plot_threshold = 0.005
            relative_threshold = 0.01

        plot_element = Image_Utils.delete_stray_marks(plot_element,
                                                      plot_threshold,
                                                      relative_threshold)
        plot_element_backup = Image_Utils.delete_stray_marks(
            plot_element_backup, plot_threshold, relative_threshold)

        # Now, crop out the borders so we just have the central values - this allows us
        # to standardize size
        x0, x1, y0, y1 = Image_Utils.crop_white_border(plot_element)

        # Now we have bounding x/y coordinates
        # Calculate height and width:
        h = y1 - y0
        w = x1 - x0

        # Sometimes in low quality images, empty cells may have noise - also need to filter
        # based on area of element
        #THRESHOLD_AREA_FRACTION = 0.03;
        #fraction_element_area = (w*h)/(np.size(plot_element, 0)*np.size(plot_element, 1));

        # If this was an empty plot, (or element area is below threshold) we have no value
        #if ((w <= 0) or (h <= 0) or fraction_element_area < THRESHOLD_AREA_FRACTION):
        if (w <= 0) or (h <= 0):
            Logger.get_logger().log_msg(
                Logger.DEBUG_FLAG_DEBUG,
                "Declaring no value because cell is empty/below threshold marks"
            )

            return_val = Hvf_Value.VALUE_NO_VALUE

            Hvf_Value.i = Hvf_Value.i + 1
        else:

            # First, split the slice into a character list:

            list_of_chars = Hvf_Value.chop_into_char_list(
                plot_element[y0:1 + y1, x0:1 + x1])
            list_of_chars_backup = Hvf_Value.chop_into_char_list(
                plot_element[y0:1 + y1, x0:1 + x1])

            # Check for special cases (ie, non-numeric characters)

            # Check if <0 value
            # Can optimize detection accuracy by limiting check to only raw plot values with 2 chars:
            if (plot_type == "raw" and len(list_of_chars) == 2
                    and (Hvf_Value.is_less_than(list_of_chars[0])
                         or Hvf_Value.is_less_than(list_of_chars_backup[0]))):

                Logger.get_logger().log_msg(Logger.DEBUG_FLAG_DEBUG,
                                            "Detected less-than sign")
                return_val = Hvf_Value.VALUE_BELOW_THRESHOLD

            # Check if the above detection worked:
            if (return_val == 0):

                # No, so continue detection for number

                # Determine if we have a minus sign
                is_minus = 1

                # First, look for minus sign - if we have 2 or 3 characters

                # Negative numbers are not present in raw plot
                if not (plot_type == "raw"):

                    if (len(list_of_chars) == 2
                            and Hvf_Value.is_minus(list_of_chars[0])):

                        # Detected minus sign:
                        Logger.get_logger().log_msg(Logger.DEBUG_FLAG_DEBUG,
                                                    "Detected minus sign")

                        # Set our multiplier factor (makes later numeric correction easier)
                        is_minus = -1

                        # Remove the character from the list
                        list_of_chars.pop(0)
                        list_of_chars_backup.pop(0)

                    elif (len(list_of_chars) == 3):
                        # We know there must be a minus sign, so just raise flag
                        Logger.get_logger().log_msg(Logger.DEBUG_FLAG_DEBUG,
                                                    "Assuming minus sign")

                        is_minus = -1
                        # Remove the character from the list
                        list_of_chars.pop(0)
                        list_of_chars_backup.pop(0)

                # Now, look for digits, and calculate running value

                running_value = 0

                for jj in range(len(list_of_chars)):

                    # Pull out our digit to detect, and clean it
                    digit = Hvf_Value.clean_slice(list_of_chars[jj])

                    show_element_func = (lambda: cv2.imshow(
                        'Sub element ' + str(Hvf_Value.i) + "_" + str(jj),
                        digit))
                    Logger.get_logger().log_function(Logger.DEBUG_FLAG_DEBUG,
                                                     show_element_func)

                    Hvf_Value.j = Hvf_Value.j + 1

                    # Search for 0 if it is the trailing 0 of a multi-digit number, or if lone digit and not a minus
                    allow_search_zero = ((jj == len(list_of_chars) - 1) and
                                         (len(list_of_chars) > 1)) or (
                                             (len(list_of_chars) == 1) and
                                             (is_minus == 1))

                    Logger.get_logger().log_msg(
                        Logger.DEBUG_FLAG_DEBUG,
                        "Allow 0 search: " + str(allow_search_zero))
                    Logger.get_logger().log_msg(Logger.DEBUG_FLAG_DEBUG,
                                                "jj: " + str(jj))
                    Logger.get_logger().log_msg(
                        Logger.DEBUG_FLAG_DEBUG,
                        "list_of_chars length: " + str(len(list_of_chars)))

                    best_value, best_loc, best_scale_factor, best_match = Hvf_Value.identify_digit(
                        digit, allow_search_zero)

                    # If not a good match, recheck with alternatively processed image -> may increase yield
                    threshold_match_digit = 0.5

                    if (best_match > 0 and best_match < threshold_match_digit):

                        digit_backup = Hvf_Value.clean_slice(
                            list_of_chars_backup[jj])
                        best_value, best_loc, best_scale_factor, best_match = Hvf_Value.identify_digit(
                            digit_backup, allow_search_zero)

                    running_value = (10 * running_value) + best_value

                Hvf_Value.i = Hvf_Value.i + 1
                Hvf_Value.j = 0

                return_val = running_value * is_minus

        # Debug info string for the best matched value:
        debug_best_match_string = "Best matched value: " + Hvf_Value.get_string_from_value(
            return_val)
        Logger.get_logger().log_msg(Logger.DEBUG_FLAG_INFO,
                                    debug_best_match_string)

        return return_val
    def identify_digit(plot_element, allow_search_zero):

        # We template match against all icons and look for best fit:
        best_match = None
        best_val = None
        best_loc = None
        best_scale_factor = None

        height = np.size(plot_element, 0)
        width = np.size(plot_element, 1)

        # Can skip 0 if flag tells us to. This can help maximize accuracy in low-res cases
        # Do this when we know something about the digit (it is a leading digit, etc)
        start_index = 0
        if not allow_search_zero:
            start_index = 1

        for ii in range(start_index,
                        len(Hvf_Value.value_icon_templates.keys())):

            for dir in Hvf_Value.value_icon_templates[ii]:

                # First, scale our template value:
                val_icon = Hvf_Value.value_icon_templates[ii][dir]

                plot_element_temp = plot_element.copy()

                scale_factor = 1
                # Use the smaller factor to make sure we fit into the element icon
                if (height < np.size(val_icon, 0)):
                    # Need to upscale plot_element
                    scale_factor = np.size(val_icon, 0) / height
                    plot_element_temp = cv2.resize(plot_element_temp, (0, 0),
                                                   fx=scale_factor,
                                                   fy=scale_factor)

                else:
                    # Need to upscale val_icon
                    scale_factor = height / (np.size(val_icon, 0))
                    val_icon = cv2.resize(val_icon, (0, 0),
                                          fx=scale_factor,
                                          fy=scale_factor)

                # In case the original is too small by width compared to value_icon, need
                # to widen - do so by copymakeborder replicate

                if (np.size(plot_element_temp, 1) < np.size(val_icon, 1)):
                    border = np.size(val_icon, 1) - np.size(
                        plot_element_temp, 1)
                    #plot_element_temp = cv2.copyMakeBorder(plot_element_temp,0,0,0,border,cv2.BORDER_CONSTANT,0);

                # Apply template matching:
                temp_matching = cv2.matchTemplate(plot_element_temp, val_icon,
                                                  cv2.TM_CCOEFF_NORMED)

                # Grab our result
                min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(
                    temp_matching)

                Logger.get_logger().log_msg(
                    Logger.DEBUG_FLAG_DEBUG,
                    "Matching against " + str(ii) + ": " + str(max_val))

                # Check to see if this is our best fit yet:
                if (best_match is None or max_val > best_match):
                    # This is best fit - record the match value and the actual value
                    best_match = max_val
                    best_val = ii
                    best_loc = max_loc
                    best_scale_factor = scale_factor

        # TODO: refine specific cases that tend to be misclassified

        # 1 vs 4
        if (best_val == 4 or best_val == 1):

            # Cut number in half and take bottom half -> find contours
            # If width of contour is most of element --> 4
            # otherwise, 1

            bottom_half = Image_Utils.slice_image(plot_element, 0.5, 0.5, 0, 1)

            cnts, hierarchy = cv2.findContours(
                cv2.bitwise_not(bottom_half.copy()), cv2.RETR_EXTERNAL,
                cv2.CHAIN_APPROX_SIMPLE)

            # Sort contours by width
            largest_contour = sorted(cnts,
                                     key=Hvf_Value.contour_width,
                                     reverse=True)[0]

            if (Hvf_Value.contour_width(largest_contour) > width * 0.8):
                best_val = 4
            else:
                best_val = 1

        return best_val, best_loc, best_scale_factor, best_match
Exemplo n.º 9
0
    def extract_values_from_plot(plot_image, plot_type, icon_type):

        # First, image process for best readability:
        #plot_image = cv2.GaussianBlur(plot_image, (5,5), 0)

        plot_image_backup = plot_image.copy()

        # Perform image processing depending on plot type:
        if (icon_type == Hvf_Plot_Array.PLOT_PERC):
            plot_image = cv2.bitwise_not(
                cv2.adaptiveThreshold(plot_image, 255,
                                      cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
                                      cv2.THRESH_BINARY_INV, 11, 5))
        elif (icon_type == Hvf_Plot_Array.PLOT_VALUE):
            #plot_image = cv2.GaussianBlur(plot_image, (5,5), 0)
            ret2, plot_image = cv2.threshold(
                plot_image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

            kernel_size = 31
            mean_offset = 15
            plot_image_backup = cv2.bitwise_not(
                cv2.adaptiveThreshold(plot_image_backup, 255,
                                      cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
                                      cv2.THRESH_BINARY_INV, kernel_size,
                                      mean_offset))

            kernel = np.ones((3, 3), np.uint8)

        # For readability, grab our height/width:
        plot_width = np.size(plot_image, 1)
        plot_height = np.size(plot_image, 0)

        # The elements are laid out roughly within a 10x10 grid
        NUM_CELLS_ROW = Hvf_Plot_Array.NUM_OF_PLOT_ROWS
        NUM_CELLS_COL = Hvf_Plot_Array.NUM_OF_PLOT_COLS

        # Delete triangle icon, if we can find it:
        if (plot_type == Hvf_Plot_Array.PLOT_RAW):
            if not (Hvf_Plot_Array.find_and_delete_triangle_icon(
                    plot_image, "v1")):
                Hvf_Plot_Array.find_and_delete_triangle_icon(plot_image, "v2")

        # Mask out corners:
        corner_mask = Hvf_Plot_Array.generate_corner_mask(
            plot_width, plot_height)
        plot_image = cv2.bitwise_or(plot_image, cv2.bitwise_not(corner_mask))

        # First, declare our return value array, no need to really initialize bc we'll
        # iterate through it
        plot_values_array = 0

        if (icon_type == Hvf_Plot_Array.PLOT_PERC):
            plot_values_array = np.zeros((NUM_CELLS_COL, NUM_CELLS_ROW),
                                         dtype=Hvf_Perc_Icon)

        elif (icon_type == Hvf_Plot_Array.PLOT_VALUE):
            plot_values_array = np.zeros((NUM_CELLS_COL, NUM_CELLS_ROW),
                                         dtype=Hvf_Value)

        plot_image = Hvf_Plot_Array.delete_plot_axes(plot_image)

        # Grab the grid lines:
        grid_line_dict = Hvf_Plot_Array.get_plot_grid_lines(
            plot_image, plot_type, icon_type)

        plot_image_debug_copy = plot_image.copy()
        # Debug code - draws out slicing for the elements on the plot:
        for c in range(Hvf_Plot_Array.NUM_OF_PLOT_COLS + 1):
            x = int(grid_line_dict['col_list'][c] * plot_width)
            #cv2.line(plot_image_debug_copy, (x, 0), (x, plot_height), (0), 1);

        for r in range(Hvf_Plot_Array.NUM_OF_PLOT_ROWS + 1):
            y = int(grid_line_dict['row_list'][r] * plot_height)
            #cv2.line(plot_image_debug_copy, (0, y), (plot_width, y), (0), 1);

        # Debug function for showing the plot:
        show_plot_func = (
            lambda: cv2.imshow("plot " + icon_type, plot_image_debug_copy))
        Logger.get_logger().log_function(Logger.DEBUG_FLAG_DEBUG,
                                         show_plot_func)

        #cv2.imshow("plot " + icon_type, plot_image_debug_copy)
        #cv2.waitKey();

        # We iterate through our array, then slice out the appropriate cell from the plot
        for x in range(0, NUM_CELLS_COL):
            for y in range(0, NUM_CELLS_ROW):

                # Debug info for indicating what cell we're computing:
                Logger.get_logger().log_msg(Logger.DEBUG_FLAG_INFO,
                                            "Cell " + str(x) + "," + str(y))

                # Grab our cell slice for the plot element
                # (remember arguments: slice_image(image, y_ratio, y_size, x_ratio, x_size):

                # The height of the axes tends to extend ~2.5% past the elements on top, bottom
                # The width of the axes tends to extend
                # So we take that into account when we take the slice

                row_grid_val = grid_line_dict['row_list'][y]
                row_grid_val_size = grid_line_dict['row_list'][
                    y + 1] - grid_line_dict['row_list'][y]

                col_grid_val = grid_line_dict['col_list'][x]
                col_grid_val_size = grid_line_dict['col_list'][
                    x + 1] - grid_line_dict['col_list'][x]

                cell_slice = Image_Utils.slice_image(plot_image, row_grid_val,
                                                     row_grid_val_size,
                                                     col_grid_val,
                                                     col_grid_val_size)
                cell_slice_backup = Image_Utils.slice_image(
                    plot_image_backup, row_grid_val, row_grid_val_size,
                    col_grid_val, col_grid_val_size)

                cell_object = 0

                # Then, need to analyze to figure out what element is in this position
                # What we look for depends on type of plot - perc vs value
                if (icon_type == Hvf_Plot_Array.PLOT_PERC):

                    if (Hvf_Plot_Array.PLOT_ELEMENT_BOOLEAN_MASK[y][x]):
                        # This element needs to be detected

                        # Because this step relies on many things going right, possible that our
                        # slices are not amenable to template matching and cause an error
                        # So, try it under a try-except clause. If failure, we place a failure
                        # placeholder

                        try:
                            cell_object = Hvf_Perc_Icon.get_perc_icon_from_image(
                                cell_slice)
                            Logger.get_logger().log_msg(
                                Logger.DEBUG_FLAG_INFO,
                                "Percentile Icon detected: " +
                                cell_object.get_display_string())

                        except:
                            Logger.get_logger().log_msg(
                                Logger.DEBUG_FLAG_WARNING,
                                "Cell " + str(x) + "," + str(y) +
                                ": Percentile icon detection failure")
                            cell_object = Hvf_Perc_Icon.get_perc_icon_from_char(
                                Hvf_Perc_Icon.PERC_FAILURE_CHAR)
                            raise Exception(str(e))

                    else:
                        # This is a no-detect element, so just instantiate a blank:
                        cell_object = Hvf_Perc_Icon.get_perc_icon_from_char(
                            Hvf_Perc_Icon.PERC_NO_VALUE_CHAR)
                        Logger.get_logger().log_msg(
                            Logger.DEBUG_FLAG_INFO,
                            "Masking element - generating NO VALUE element")

                elif (icon_type == Hvf_Plot_Array.PLOT_VALUE):

                    if (Hvf_Plot_Array.PLOT_ELEMENT_BOOLEAN_MASK[y][x]):
                        # This element needs to be detected

                        # Because this step relies on many things going right, possible that our
                        # slices are not amenable to template matching and cause an error
                        # So, try it under a try-except clause. If failure, we place a failure
                        # placeholder to fix later

                        try:
                            cell_object = Hvf_Value.get_value_from_image(
                                cell_slice, cell_slice_backup, plot_type)
                            Logger.get_logger().log_msg(
                                Logger.DEBUG_FLAG_INFO, "Value detected: " +
                                cell_object.get_display_string())

                        except Exception as e:
                            Logger.get_logger().log_msg(
                                Logger.DEBUG_FLAG_WARNING, "Cell " + str(x) +
                                "," + str(y) + ": Value detection failure")
                            cell_object = Hvf_Value.get_value_from_display_string(
                                Hvf_Value.VALUE_FAILURE)
                            raise Exception(str(e))

                    else:
                        # This is a no-detect element, so just instantiate a blank:
                        cell_object = Hvf_Value.get_value_from_display_string(
                            Hvf_Value.VALUE_NO_VALUE)
                        Logger.get_logger().log_msg(
                            Logger.DEBUG_FLAG_INFO,
                            "Masking element - generating NO VALUE element")

                Logger.get_logger().log_msg(Logger.DEBUG_FLAG_INFO, "=====")

                # Lastly, store into array:
                plot_values_array[x, y] = cell_object

        wait_func = (lambda: cv2.waitKey(0))
        Logger.get_logger().log_function(Logger.DEBUG_FLAG_DEBUG, wait_func)
        destroy_windows_func = (lambda: cv2.destroyAllWindows())
        Logger.get_logger().log_function(Logger.DEBUG_FLAG_DEBUG,
                                         destroy_windows_func)

        # Return our array:
        return plot_values_array
Exemplo n.º 10
0
    def get_plot_grid_lines(plot_image, plot_type, icon_type):

        Logger.get_logger().log_msg(Logger.DEBUG_FLAG_INFO,
                                    "Finding grid lines")

        plot_w = np.size(plot_image, 1)
        plot_h = np.size(plot_image, 0)

        horizontal_img = plot_image.copy()
        vertical_img = plot_image.copy()

        # [Horizontal]
        # Specify size on horizontal axis
        horizontal_size = horizontal_img.shape[1]

        # Create structure element for extracting horizontal lines through morphology operations
        horizontalStructure = cv2.getStructuringElement(
            cv2.MORPH_RECT, (horizontal_size, 1))

        # Apply morphology operations
        horizontal_img = cv2.morphologyEx(horizontal_img,
                                          cv2.MORPH_OPEN,
                                          horizontalStructure,
                                          iterations=2)
        #horizontal_img = cv2.erode(horizontal_img, horizontalStructure)
        #horizontal_img = cv2.dilate(horizontal_img, horizontalStructure)

        # Then, take a slice from the middle of the plot, and find contours
        # We will use this to help find grid lines
        horizontal_slice = Image_Utils.slice_image(horizontal_img, 0, 1, 0.475,
                                                   0.05)
        horizontal_slice = cv2.copyMakeBorder(horizontal_slice, 0, 0, 1, 1,
                                              cv2.BORDER_CONSTANT, 0)

        # Then, find contours (of the blank spaces) and convert to their respective centroid:
        horizontal_cnts, hierarchy = cv2.findContours(horizontal_slice,
                                                      cv2.RETR_EXTERNAL,
                                                      cv2.CHAIN_APPROX_SIMPLE)

        centroid_horizontal = list(
            map((lambda c: Hvf_Plot_Array.get_contour_centroid(c)[1] / plot_h),
                horizontal_cnts))

        # [Vertical]
        # Specify size on vertical axis
        vertical_size = vertical_img.shape[1]

        # Create structure element for extracting vertical lines through morphology operations
        verticalStructure = cv2.getStructuringElement(cv2.MORPH_RECT,
                                                      (1, vertical_size))

        # Apply morphology operations
        vertical_img = cv2.morphologyEx(vertical_img,
                                        cv2.MORPH_OPEN,
                                        verticalStructure,
                                        iterations=2)
        #vertical_img = cv2.erode(vertical_img, verticalStructure)
        #vertical_img = cv2.dilate(vertical_img, verticalStructure)

        # Then, take a slice from the middle of the plot, and find contours
        # We will use this to help find grid lines
        vertical_slice = Image_Utils.slice_image(vertical_img, 0.475, 0.05, 0,
                                                 1)
        vertical_slice = cv2.copyMakeBorder(vertical_slice, 1, 1, 0, 0,
                                            cv2.BORDER_CONSTANT, 0)

        # Then, find contours (of the blank spaces) and convert to their respective centroid:
        vertical_cnts, hierarchy = cv2.findContours(vertical_slice,
                                                    cv2.RETR_EXTERNAL,
                                                    cv2.CHAIN_APPROX_SIMPLE)

        centroid_vertical = list(
            map((lambda c: Hvf_Plot_Array.get_contour_centroid(c)[0] / plot_w),
                vertical_cnts))

        # Now, we need to find the grid lines
        # We assume grid lines are centered in the middle of plot image (since they
        # are detected that way). Have prelim grid lines, and move then accordingly
        # to fit into empty spaces

        # Columns:
        col_list = []

        # Pre-calculate some values:
        slice_w = np.size(vertical_slice, 1)
        slice_h = np.size(vertical_slice, 0)

        for c in range(Hvf_Plot_Array.NUM_OF_PLOT_COLS + 1):

            # Get our prelim column value:
            col_val = 0.5 - (0.097 * (5 - c))

            # Precalculate our coordinates to check:
            y = int(slice_h * 0.5)
            x = int(col_val * slice_w)

            if (x >= slice_w):
                x = slice_w - 1

            # If this grid line does not coincide with a plot element area, then its good

            if (vertical_slice[y, x] == 255):
                # Grid line falls into blank area - we can record value
                Logger.get_logger().log_msg(
                    Logger.DEBUG_FLAG_INFO,
                    "Prelim column {} grid line works".format(c))
                col_list.append(col_val)

            else:
                # It coincides -> convert it to the closest centroid of a blank area
                Logger.get_logger().log_msg(
                    Logger.DEBUG_FLAG_INFO,
                    "Shifting column grid line {} to nearest centroid".format(
                        c))
                closest_centroid = list(
                    sorted(centroid_vertical,
                           key=(lambda x: abs(x - col_val))))[0]

                col_list.append(closest_centroid)

        # Rows:
        row_list = []

        # Pre-calculate some values:
        slice_w = np.size(horizontal_slice, 1)
        slice_h = np.size(horizontal_slice, 0)
        for r in range(Hvf_Plot_Array.NUM_OF_PLOT_ROWS + 1):

            # Get our prelim row value:
            row_val = 0.5 - (0.095 * (5 - r))

            # Precalculate our coordinates to check:
            y = int(row_val * slice_h)
            x = int(slice_w * 0.5)

            if (y >= slice_h):
                y = slice_h - 1

            # If this grid line does not coincide with a plot element area, then its good

            if (horizontal_slice[y, x] == 255):
                # Grid line falls into blank area - we can record value
                Logger.get_logger().log_msg(
                    Logger.DEBUG_FLAG_INFO,
                    "Prelim row {} grid line works".format(r))
                row_list.append(row_val)

            else:
                # It coincides -> convert it to the closest centroid of a blank area
                Logger.get_logger().log_msg(
                    Logger.DEBUG_FLAG_INFO,
                    "Shifting row grid line {} to nearest centroid".format(r))
                closest_centroid = list(
                    sorted(centroid_horizontal,
                           key=(lambda y: abs(y - row_val))))[0]

                row_list.append(closest_centroid)

        # Collect our two lists and return them together:
        return_dict = {}
        return_dict['row_list'] = row_list
        return_dict['col_list'] = col_list

        return return_dict