Exemplo n.º 1
0
    def launch(
        self, job_overrides: Sequence[Sequence[str]], initial_job_idx: int
    ) -> Sequence[JobReturn]:
        # lazy import to ensure plugin discovery remains fast
        import submitit

        num_jobs = len(job_overrides)
        assert num_jobs > 0
        params = self.params
        # build executor
        init_params = {"folder": self.params["submitit_folder"]}
        specific_init_keys = {"max_num_timeout"}

        init_params.update(
            **{
                f"{self._EXECUTOR}_{x}": y
                for x, y in params.items()
                if x in specific_init_keys
            }
        )
        init_keys = specific_init_keys | {"submitit_folder"}
        executor = submitit.AutoExecutor(cluster=self._EXECUTOR, **init_params)

        # specify resources/parameters
        baseparams = set(dataclasses.asdict(BaseTarget()).keys())
        params = {
            x if x in baseparams else f"{self._EXECUTOR}_{x}": y
            for x, y in params.items()
            if x not in init_keys
        }
        executor.update_parameters(**params)

        log.info(
            f"Submitit '{self._EXECUTOR}' sweep output dir : "
            f"{self.config.hydra.sweep.dir}"
        )
        sweep_dir = Path(str(self.config.hydra.sweep.dir))
        sweep_dir.mkdir(parents=True, exist_ok=True)
        if "mode" in self.config.hydra.sweep:
            mode = int(str(self.config.hydra.sweep.mode), 8)
            os.chmod(sweep_dir, mode=mode)

        params = []

        for idx, overrides in enumerate(job_overrides):
            idx = initial_job_idx + idx
            lst = " ".join(filter_overrides(overrides))
            log.info(f"\t#{idx} : {lst}")
            params.append(
                (
                    list(overrides),
                    "hydra.sweep.dir",
                    idx,
                    f"job_id_for_{idx}",
                    Singleton.get_state(),
                )
            )

        jobs = executor.map_array(self, *zip(*params))
        return [j.results()[0] for j in jobs]
Exemplo n.º 2
0
def hydra_restore_singletons() -> None:
    """
    Restore singletons state after the function returns
    """
    state = copy.deepcopy(Singleton.get_state())
    yield
    Singleton.set_state(state)
Exemplo n.º 3
0
    def launch(self, job_overrides: Sequence[Sequence[str]],
               initial_job_idx: int) -> Sequence[JobReturn]:
        """
        :param job_overrides: a List of List<String>, where each inner list is the arguments for one job run.
        :param initial_job_idx: Initial job idx in batch.
        :return: an array of return values from run_job with indexes corresponding to the input list indexes.
        """
        setup_globals()
        assert self.config is not None
        assert self.hydra_context is not None
        assert self.task_function is not None

        configure_log(self.config.hydra.hydra_logging,
                      self.config.hydra.verbose)
        sweep_dir = Path(str(self.config.hydra.sweep.dir))
        sweep_dir.mkdir(parents=True, exist_ok=True)
        log.info(
            f"Example Launcher(foo={self.foo}, bar={self.bar}) is launching {len(job_overrides)} jobs locally"
        )
        log.info(f"Sweep output dir : {sweep_dir}")
        runs = []

        for idx, overrides in enumerate(job_overrides):
            idx = initial_job_idx + idx
            lst = " ".join(filter_overrides(overrides))
            log.info(f"\t#{idx} : {lst}")
            sweep_config = self.hydra_context.config_loader.load_sweep_config(
                self.config, list(overrides))
            with open_dict(sweep_config):
                # This typically coming from the underlying scheduler (SLURM_JOB_ID for instance)
                # In that case, it will not be available here because we are still in the main process.
                # but instead should be populated remotely before calling the task_function.
                sweep_config.hydra.job.id = f"job_id_for_{idx}"
                sweep_config.hydra.job.num = idx

            # If your launcher is executing code in a different process, it is important to restore
            # the singleton state in the new process.
            # To do this, you will likely need to serialize the singleton state along with the other
            # parameters passed to the child process.

            # happening on this process (executing launcher)
            state = Singleton.get_state()

            # happening on the spawned process (executing task_function in run_job)
            Singleton.set_state(state)

            ret = run_job(
                hydra_context=self.hydra_context,
                task_function=self.task_function,
                config=sweep_config,
                job_dir_key="hydra.sweep.dir",
                job_subdir_key="hydra.sweep.subdir",
            )
            runs.append(ret)
            # reconfigure the logging subsystem for Hydra as the run_job call configured it for the Job.
            # This is needed for launchers that calls run_job in the same process and not spawn a new one.
            configure_log(self.config.hydra.hydra_logging,
                          self.config.hydra.verbose)
        return runs
Exemplo n.º 4
0
def launch(
    launcher: RayAWSLauncher,
    job_overrides: Sequence[Sequence[str]],
    initial_job_idx: int,
) -> Sequence[JobReturn]:
    setup_globals()
    assert launcher.config is not None
    assert launcher.config_loader is not None
    assert launcher.task_function is not None

    setup_commands = launcher.env_setup.commands
    with read_write(setup_commands):
        setup_commands.extend([
            f"pip install {package}=={version}"
            for package, version in launcher.env_setup.pip_packages.items()
        ])
        setup_commands.extend(launcher.ray_cfg.cluster.setup_commands)

    with read_write(launcher.ray_cfg.cluster):
        launcher.ray_cfg.cluster.setup_commands = setup_commands

    configure_log(launcher.config.hydra.hydra_logging,
                  launcher.config.hydra.verbose)

    log.info(f"Ray Launcher is launching {len(job_overrides)} jobs, ")

    with tempfile.TemporaryDirectory() as local_tmp_dir:
        sweep_configs = []
        for idx, overrides in enumerate(job_overrides):
            idx = initial_job_idx + idx
            ostr = " ".join(filter_overrides(overrides))
            log.info(f"\t#{idx} : {ostr}")
            sweep_config = launcher.config_loader.load_sweep_config(
                launcher.config, list(overrides))
            with open_dict(sweep_config):
                # job.id will be set on the EC2 instance before running the job.
                sweep_config.hydra.job.num = idx

            sweep_configs.append(sweep_config)

        _pickle_jobs(
            tmp_dir=local_tmp_dir,
            sweep_configs=sweep_configs,  # type: ignore
            task_function=launcher.task_function,
            singleton_state=Singleton.get_state(),
        )

        with tempfile.NamedTemporaryFile(suffix=".yaml", delete=False) as f:
            with open(f.name, "w") as file:
                OmegaConf.save(config=launcher.ray_cfg.cluster,
                               f=file.name,
                               resolve=True)
            launcher.ray_yaml_path = f.name
            log.info(
                f"Saving RayClusterConf in a temp yaml file: {launcher.ray_yaml_path}."
            )

            return launch_jobs(launcher, local_tmp_dir,
                               Path(HydraConfig.get().sweep.dir))
Exemplo n.º 5
0
    def launch(self, job_overrides: Sequence[Sequence[str]],
               initial_job_idx: int) -> Sequence[JobReturn]:
        # lazy import to ensure plugin discovery remains fast
        import submitit

        num_jobs = len(job_overrides)
        assert num_jobs > 0

        # make sure you don't change inplace
        queue_parameters = self.queue_parameters.copy()
        OmegaConf.set_struct(queue_parameters, True)
        executors = {
            QueueType.auto: submitit.AutoExecutor,
            QueueType.slurm: submitit.SlurmExecutor,
            QueueType.local: submitit.LocalExecutor,
        }
        init_parameters = {
            "cluster", "max_num_timeout", "slurm_max_num_timeout"
        }
        executor = executors[self.queue](
            folder=self.folder,
            **{
                x: y
                for x, y in queue_parameters[self.queue.value].items()
                if x in init_parameters
            },
        )
        executor.update_parameters(
            **{
                x: y
                for x, y in queue_parameters[self.queue.value].items()
                if x not in init_parameters
            })

        log.info("Submitit '{}' sweep output dir : {}".format(
            self.queue.value, self.config.hydra.sweep.dir))
        sweep_dir = Path(str(self.config.hydra.sweep.dir))
        sweep_dir.mkdir(parents=True, exist_ok=True)
        if "mode" in self.config.hydra.sweep:
            mode = int(str(self.config.hydra.sweep.mode), 8)
            os.chmod(sweep_dir, mode=mode)

        params = []

        for idx, overrides in enumerate(job_overrides):
            idx = initial_job_idx + idx
            lst = " ".join(filter_overrides(overrides))
            log.info(f"\t#{idx} : {lst}")
            params.append((
                list(overrides),
                "hydra.sweep.dir",
                idx,
                f"job_id_for_{idx}",
                Singleton.get_state(),
            ))

        jobs = executor.map_array(self, *zip(*params))
        return [j.results()[0] for j in jobs]
Exemplo n.º 6
0
    def launch(
        self, job_overrides: Sequence[Sequence[str]], initial_job_idx: int
    ) -> Sequence[JobReturn]:
        # lazy import to ensure plugin discovery remains fast
        import submitit

        num_jobs = len(job_overrides)
        assert num_jobs > 0

        # make sure you don't change inplace
        queue_parameters = self.queue_parameters.copy()
        OmegaConf.set_struct(queue_parameters, True)
        if self.queue == "auto":
            max_num_timeout = self.queue_parameters.auto.max_num_timeout
            with open_dict(queue_parameters):
                del queue_parameters.auto["max_num_timeout"]
            executor = submitit.AutoExecutor(
                folder=self.folder, max_num_timeout=max_num_timeout
            )
        elif self.queue == "slurm":
            max_num_timeout = self.queue_parameters.slurm.max_num_timeout
            with open_dict(queue_parameters):
                del queue_parameters.slurm["max_num_timeout"]
            executor = submitit.SlurmExecutor(
                folder=self.folder, max_num_timeout=max_num_timeout
            )
        elif self.queue == "local":
            executor = submitit.LocalExecutor(folder=self.folder)
        else:
            raise RuntimeError("Unsupported queue type {}".format(self.queue))

        executor.update_parameters(**queue_parameters[self.queue])

        log.info("Sweep output dir : {}".format(self.config.hydra.sweep.dir))
        sweep_dir = Path(str(self.config.hydra.sweep.dir))
        sweep_dir.mkdir(parents=True, exist_ok=True)
        if "mode" in self.config.hydra.sweep:
            mode = int(str(self.config.hydra.sweep.mode), 8)
            os.chmod(sweep_dir, mode=mode)

        params = []

        for idx, overrides in enumerate(job_overrides):
            idx = initial_job_idx + idx
            lst = " ".join(filter_overrides(overrides))
            log.info(f"\t#{idx} : {lst}")
            params.append(
                (
                    list(overrides),
                    "hydra.sweep.dir",
                    idx,
                    f"job_id_for_{idx}",
                    Singleton.get_state(),
                )
            )

        jobs = executor.map_array(self, *zip(*params))
        return [j.results()[0] for j in jobs]
Exemplo n.º 7
0
def restore_singletons() -> Any:
    """
    A fixture to restore singletons state after this the function.
    This is useful for functions that are making a one-off change to singlestons that should not effect
    other tests
    """
    state = copy.deepcopy(Singleton.get_state())
    yield
    Singleton.set_state(state)
Exemplo n.º 8
0
def hydra_restore_singletons() -> None:
    """
    Restore singletons state after the function returns
    """
    state = copy.deepcopy(Singleton.get_state())
    resolvers = copy.deepcopy(BaseContainer._resolvers)
    yield
    Singleton.set_state(state)
    BaseContainer._resolvers = resolvers
Exemplo n.º 9
0
def launch(
    launcher: RayAWSLauncher,
    job_overrides: Sequence[Sequence[str]],
    initial_job_idx: int,
) -> Sequence[JobReturn]:
    setup_globals()
    assert launcher.config is not None
    assert launcher.hydra_context is not None
    assert launcher.task_function is not None

    setup_commands = launcher.env_setup.commands
    packages = filter(
        lambda x: x[1] is not None, launcher.env_setup.pip_packages.items()
    )
    with read_write(setup_commands):
        setup_commands.extend(
            [f"pip install {package}=={version}" for package, version in packages]
        )
        setup_commands.extend(launcher.ray_cfg.cluster.setup_commands)

    with read_write(launcher.ray_cfg.cluster):
        launcher.ray_cfg.cluster.setup_commands = setup_commands

    configure_log(launcher.config.hydra.hydra_logging, launcher.config.hydra.verbose)
    logging_config = OmegaConf.to_container(
        launcher.logging, resolve=True, enum_to_str=True
    )
    sdk.configure_logging(**logging_config)

    log.info(f"Ray Launcher is launching {len(job_overrides)} jobs, ")

    with tempfile.TemporaryDirectory() as local_tmp_dir:
        sweep_configs = []
        for idx, overrides in enumerate(job_overrides):
            idx = initial_job_idx + idx
            ostr = " ".join(filter_overrides(overrides))
            log.info(f"\t#{idx} : {ostr}")
            sweep_config = launcher.hydra_context.config_loader.load_sweep_config(
                launcher.config, list(overrides)
            )
            with open_dict(sweep_config):
                # job.id will be set on the EC2 instance before running the job.
                sweep_config.hydra.job.num = idx

            sweep_configs.append(sweep_config)

        _pickle_jobs(
            tmp_dir=local_tmp_dir,
            hydra_context=launcher.hydra_context,
            sweep_configs=sweep_configs,  # type: ignore
            task_function=launcher.task_function,
            singleton_state=Singleton.get_state(),
        )
        return launch_jobs(
            launcher, local_tmp_dir, Path(launcher.config.hydra.sweep.dir)
        )
Exemplo n.º 10
0
def launch(
    launcher: JoblibLauncher,
    job_overrides: Sequence[Sequence[str]],
    initial_job_idx: int,
) -> Sequence[JobReturn]:
    """
    :param job_overrides: a List of List<String>, where each inner list is the arguments for one job run.
    :param initial_job_idx: Initial job idx in batch.
    :return: an array of return values from run_job with indexes corresponding to the input list indexes.
    """
    setup_globals()
    assert launcher.config is not None
    assert launcher.task_function is not None
    assert launcher.hydra_context is not None

    configure_log(launcher.config.hydra.hydra_logging, launcher.config.hydra.verbose)
    sweep_dir = Path(str(launcher.config.hydra.sweep.dir))
    sweep_dir.mkdir(parents=True, exist_ok=True)

    # Joblib's backend is hard-coded to loky since the threading
    # backend is incompatible with Hydra
    joblib_cfg = launcher.joblib
    joblib_cfg["backend"] = "loky"
    process_joblib_cfg(joblib_cfg)

    log.info(
        "Joblib.Parallel({}) is launching {} jobs".format(
            ",".join([f"{k}={v}" for k, v in joblib_cfg.items()]),
            len(job_overrides),
        )
    )
    log.info("Launching jobs, sweep output dir : {}".format(sweep_dir))
    for idx, overrides in enumerate(job_overrides):
        log.info("\t#{} : {}".format(idx, " ".join(filter_overrides(overrides))))

    singleton_state = Singleton.get_state()

    runs = Parallel(**joblib_cfg)(
        delayed(execute_job)(
            initial_job_idx + idx,
            overrides,
            launcher.hydra_context,
            launcher.config,
            launcher.task_function,
            singleton_state,
        )
        for idx, overrides in enumerate(job_overrides)
    )

    assert isinstance(runs, List)
    for run in runs:
        assert isinstance(run, JobReturn)
    return runs
Exemplo n.º 11
0
    def launch(self, job_overrides: Sequence[Sequence[str]],
               initial_job_idx: int) -> Sequence[JobReturn]:
        """
        :param job_overrides: a List of List<String>, where each inner list is the arguments for one job run.
        :param initial_job_idx: Initial job idx in batch.
        :return: an array of return values from run_job with indexes corresponding to the input list indexes.
        """
        setup_globals()
        assert self.config is not None
        assert self.config_loader is not None
        assert self.task_function is not None

        configure_log(self.config.hydra.hydra_logging,
                      self.config.hydra.verbose)
        sweep_dir = Path(str(self.config.hydra.sweep.dir))
        sweep_dir.mkdir(parents=True, exist_ok=True)
        log.info(
            f"TaskSpooler Launcher is launching {len(job_overrides)} jobs locally"
        )
        log.info(f"Sweep output dir : {sweep_dir}")
        runs = []
        singleton_state = Singleton.get_state()

        for idx, overrides in enumerate(job_overrides):
            overrides = list(overrides)
            overrides.extend(self.hydra_overrides)
            overrides = tuple(overrides)

            ret = execute_job(
                initial_job_idx + idx,
                overrides,
                self.config_loader,
                self.config,
                self.task_function,
                singleton_state,
                self.cmd_prefix,
                self.tsp_prefix,
            )
            runs.append(ret)
            time.sleep(self.time_between_submit)

        assert isinstance(runs, List)
        for run in runs:
            assert isinstance(run, JobReturn)

        if self.tail_jobs:
            Parallel(n_jobs=len(job_overrides), backend='threading')(
                delayed(self.tail_job)(run.return_value) for run in runs)
        return runs
Exemplo n.º 12
0
def launch(
    launcher: RayLocalLauncher,
    job_overrides: Sequence[Sequence[str]],
    initial_job_idx: int,
) -> Sequence[JobReturn]:
    setup_globals()
    assert launcher.config is not None
    assert launcher.config_loader is not None
    assert launcher.task_function is not None

    configure_log(launcher.config.hydra.hydra_logging, launcher.config.hydra.verbose)
    sweep_dir = Path(str(launcher.config.hydra.sweep.dir))
    sweep_dir.mkdir(parents=True, exist_ok=True)
    log.info(
        f"Ray Launcher is launching {len(job_overrides)} jobs, "
        f"sweep output dir: {sweep_dir}"
    )

    start_ray(launcher.ray_init_cfg)

    runs = []
    for idx, overrides in enumerate(job_overrides):
        idx = initial_job_idx + idx
        ostr = " ".join(filter_overrides(overrides))
        log.info(f"\t#{idx} : {ostr}")
        sweep_config = launcher.config_loader.load_sweep_config(
            launcher.config, list(overrides)
        )
        with open_dict(sweep_config):
            # This typically coming from the underlying scheduler (SLURM_JOB_ID for instance)
            # In that case, it will not be available here because we are still in the main process.
            # but instead should be populated remotely before calling the task_function.
            sweep_config.hydra.job.id = f"job_id_for_{idx}"
            sweep_config.hydra.job.num = idx
            ray_obj = launch_job_on_ray(
                launcher.ray_remote_cfg,
                sweep_config,
                launcher.task_function,
                Singleton.get_state(),
            )
            runs.append(ray_obj)

    return [ray.get(run) for run in runs]
Exemplo n.º 13
0
    def launch(self,
               job_overrides: Sequence[Sequence[str]]) -> Sequence[JobReturn]:
        """
        :param job_overrides: a List of List<String>, where each inner list is the arguments for one job run.
        :return: an array of return values from run_job with indexes corresponding to the input list indexes.
        """
        setup_globals()
        assert self.config is not None
        assert self.config_loader is not None
        assert self.task_function is not None

        configure_log(self.config.hydra.hydra_logging,
                      self.config.hydra.verbose)
        sweep_dir = Path(str(self.config.hydra.sweep.dir))
        sweep_dir.mkdir(parents=True, exist_ok=True)
        log.info("Joblib.Parallel({}) is launching {} jobs".format(
            ",".join([f"{k}={v}" for k, v in self.joblib.items()]),
            len(job_overrides),
        ))
        log.info("Launching jobs, sweep output dir : {}".format(sweep_dir))

        singleton_state = Singleton.get_state()

        for idx, overrides in enumerate(job_overrides):
            log.info("\t#{} : {}".format(idx, " ".join(
                filter_overrides(overrides))))

        runs = Parallel(**self.joblib)(delayed(execute_job)(
            idx,
            overrides,
            self.config_loader,
            self.config,
            self.task_function,
            singleton_state,
        ) for idx, overrides in enumerate(job_overrides))

        assert isinstance(runs, List)
        for run in runs:
            assert isinstance(run, JobReturn)
        return runs
Exemplo n.º 14
0
def launch(
    launcher: RQLauncher,
    job_overrides: Sequence[Sequence[str]],
    initial_job_idx: int,
) -> JobReturn:
    """
    :param job_overrides: a List of List<String>, where each inner list is the arguments for one job run.
    :param initial_job_idx: Initial job idx in batch.
    :return: an array of return values from run_job with indexes corresponding to the input list indexes.
    """
    setup_globals()
    assert launcher.config is not None
    assert launcher.config_loader is not None
    assert launcher.task_function is not None

    configure_log(launcher.config.hydra.hydra_logging,
                  launcher.config.hydra.verbose)
    sweep_dir = Path(str(launcher.config.hydra.sweep.dir))
    sweep_dir.mkdir(parents=True, exist_ok=True)

    # RQ configuration
    rq_cfg = launcher.rq

    # Redis configuration
    is_async = not rq_cfg.redis.mock
    if is_async:
        connection = Redis(
            host=rq_cfg.redis.host,
            port=rq_cfg.redis.port,
            db=rq_cfg.redis.db,
            password=rq_cfg.redis.password,
        )
    else:
        log.info("Running in synchronous mode")
        connection = FakeStrictRedis()
    queue = Queue(
        name=rq_cfg.queue,
        connection=connection,
        is_async=is_async,
        serializer=cloudpickle,
    )

    # Enqueue jobs
    jobs = []
    singleton_state = Singleton.get_state()
    log.info(
        f"RQ Launcher is enqueuing {len(job_overrides)} job(s) in queue : {rq_cfg.queue}"
    )
    log.info("Sweep output dir : {}".format(sweep_dir))
    if not sweep_dir.is_absolute():
        log.warn(
            "Using relative sweep dir: Please be aware that dir will be relative to where workers are started from."
        )

    for idx, overrides in enumerate(job_overrides):
        description = " ".join(filter_overrides(overrides))

        enqueue_keywords = OmegaConf.to_container(rq_cfg.enqueue, resolve=True)
        if enqueue_keywords["job_timeout"] is None:
            enqueue_keywords["job_timeout"] = -1
        if enqueue_keywords["result_ttl"] is None:
            enqueue_keywords["result_ttl"] = -1
        if enqueue_keywords["failure_ttl"] is None:
            enqueue_keywords["failure_ttl"] = -1
        if enqueue_keywords["job_id"] is None:
            enqueue_keywords["job_id"] = str(uuid.uuid4())
        if enqueue_keywords["description"] is None:
            enqueue_keywords["description"] = description

        sweep_config = launcher.config_loader.load_sweep_config(
            launcher.config, list(overrides))
        with open_dict(sweep_config):
            sweep_config.hydra.job.id = enqueue_keywords["job_id"]
            sweep_config.hydra.job.num = initial_job_idx + idx

        job = queue.enqueue(
            execute_job,
            sweep_config=sweep_config,
            task_function=launcher.task_function,
            singleton_state=singleton_state,
            **enqueue_keywords,
        )
        jobs.append(job)

        log.info(f"Enqueued {job.get_id()}")
        log.info(f"\t#{idx+1} : {description}")

    log.info("Finished enqueuing")
    if rq_cfg.stop_after_enqueue:
        raise StopAfterEnqueue

    log.info(f"Polling job statuses every {rq_cfg.wait_polling} sec")
    while True:
        job_ids_done = [
            job.get_id() for job in jobs
            if job.get_status() in ["finished", "failed"]
        ]
        if len(job_ids_done) == len(jobs):
            break
        else:
            time.sleep(rq_cfg.wait_polling)

    runs = []
    for job in jobs:
        result = job.result if job.result is not None else None
        runs.append(result)

    assert isinstance(runs, List)
    for run in runs:
        assert isinstance(run, JobReturn)

    return runs
Exemplo n.º 15
0
def test_singleton_get_state(hydra_restore_singletons: Any) -> None:
    s = Singleton.get_state()
    assert Plugins not in s["instances"]
    assert Plugins in Singleton._instances
    Singleton.set_state(s)
    assert Plugins in Singleton._instances
Exemplo n.º 16
0
from hydra._internal.core_plugins.file_config_source import FileConfigSource
from hydra._internal.core_plugins.importlib_resources_config_source import (
    ImportlibResourcesConfigSource, )
from hydra._internal.core_plugins.structured_config_source import StructuredConfigSource
from hydra.core.default_element import GroupDefault, InputDefault
from hydra.core.plugins import Plugins
from hydra.core.singleton import Singleton
from hydra.plugins.config_source import ConfigSource
from hydra.test_utils.config_source_common_tests import ConfigSourceTestSuite
from hydra.test_utils.test_utils import chdir_hydra_root

chdir_hydra_root()

# Manually save and restore singletons to work around an issue with things added to the config store via importing.
# restoring is done in test_restore_singleton_state_hack(), which must be the last test in this file.
state = copy.deepcopy(Singleton.get_state())


@pytest.mark.parametrize(
    "type_, path",
    [
        pytest.param(
            FileConfigSource,
            "file://tests/test_apps/config_source_test/dir",
            id="FileConfigSource",
        ),
        pytest.param(
            ImportlibResourcesConfigSource,
            "pkg://tests.test_apps.config_source_test.dir",
            id="ImportlibResourcesConfigSource",
        ),