Exemplo n.º 1
0
def test_instantiate_classes(classname: str, params: Any, args: Any,
                             kwargs: Any, expected: Any) -> None:
    full_class = f"{MODULE_NAME}.generated.{classname}Conf"
    schema = OmegaConf.structured(get_class(full_class))
    cfg = OmegaConf.merge(schema, params)
    obj = instantiate(config=cfg, *args, **kwargs)
    assert obj == expected
Exemplo n.º 2
0
def test_instantiate_classes(
    tmpdir: Path,
    modulepath: str,
    classname: str,
    cfg: Any,
    passthrough_args: Any,
    passthrough_kwargs: Any,
    expected_class: Any,
) -> None:

    # Create fake dataset and put it in tmpdir for test:
    tmp_data_root = tmpdir.mkdir("data")
    processed_dir = os.path.join(tmp_data_root, classname, "processed")
    os.makedirs(processed_dir)
    torch.save(torch.tensor([[1.0], [1.0]]), processed_dir + "/training.pt")
    torch.save(torch.tensor([1.0]), processed_dir + "/test.pt")

    # cfg is populated here since it requires tmpdir testfixture
    cfg["root"] = str(tmp_data_root)
    full_class = f"hydra_configs.torchvision.{modulepath}.{classname}Conf"
    schema = OmegaConf.structured(get_class(full_class))
    cfg = OmegaConf.merge(schema, cfg)
    obj = instantiate(cfg, *passthrough_args, **passthrough_kwargs)
    expected_obj = expected_class(root=tmp_data_root)

    assert isinstance(obj, type(expected_obj))
    def __init__(self, *args, **kwargs):

        samplers = None
        self._samplers = kwargs.get("samplers")
        if self._samplers:
            for stage_sampler in self._samplers:
                stage = stage_sampler.stage
                func_name = f"{stage}_dataloader"
                sampling = stage_sampler.sampling
                if sampling == SAMPLING.DataLoader.value:
                    func = partial(self.create_dataloader, stage=stage)
                    func.__code__ = self.create_dataloader.__code__
                    setattr(self, f"{stage}_loader_type", sampling)
                elif sampling == SAMPLING.NeighborSampler.value:
                    func = partial(self.create_neighbor_sampler, stage=stage)
                    func.__code__ = self.create_neighbor_sampler.__code__
                    setattr(self, f"{stage}_loader_type", sampling)
                elif sampling == SAMPLING.LinkPred.value:
                    func = partial(self.create_train_test_split_edges,
                                   stage=stage)
                    func.__code__ = self.create_train_test_split_edges.__code__
                    setattr(self, f"{stage}_loader_type", sampling)
                else:
                    if hasattr(sampling, "_target_"):
                        samplers = [
                            DictConfig({
                                "stage":
                                s["stage"],
                                "sampling":
                                find_enum(s["sampling"].name, SAMPLING).value,
                            }) for s in self._samplers
                        ]
                        loader_cls = get_class(sampling._target_)
                        params = {}
                        if hasattr(sampling, "params"):
                            params = sampling.params
                        func = partial(
                            self.create_loader_from_cls,
                            loader_cls=loader_cls,
                            params=params,
                            stage=stage,
                        )
                        func.__code__ = self.create_loader_from_cls.__code__
                    else:
                        raise Exception(
                            f"Strategy should be within {[v.value for v in SAMPLING]}"
                        )
                setattr(self, func_name, func)

        if samplers is not None:
            self._samplers = samplers

        self._num_edges = kwargs.get("num_edges")
        self._num_layers = kwargs.get("num_layers")
        if (self._num_edges is not None) and (self._num_layers is not None):
            self._sizes = [self._num_edges, self._num_layers]
Exemplo n.º 4
0
def test_instantiate_classes(modulepath: str, classname: str, cfg: Any,
                             passthrough_kwargs: Any, expected: Any) -> None:
    full_class = f"hydra_configs.torch.{modulepath}.{classname}Conf"
    schema = OmegaConf.structured(get_class(full_class))
    cfg = OmegaConf.merge(schema, cfg)
    obj = instantiate(cfg, **passthrough_kwargs)

    def closure():
        return model(Tensor([10]))

    assert torch.all(torch.eq(obj.step(closure), expected.step(closure)))
Exemplo n.º 5
0
 def _init_optim(name, params, optimizers_conf=None):
     if optimizers_conf is not None:
         for optim_conf in optimizers_conf:
             if name == optim_conf["name"]:
                 optim_cls = get_class(optim_conf["_target_"])
                 return optim_cls([p for p in params], **optim_conf["params"])
         raise Exception(
             f"The provided name {name} doesn't exist within {[o['name'] for o in optimizers_conf]}"
         )
     else:
         raise Exception("Optimizer should be defined within configuration files")
Exemplo n.º 6
0
def run(config: BenchmarkConfig) -> None:
    backend_factory: Type[Backend] = get_class(config.backend._target_)
    backend = backend_factory.allocate(config)
    benchmark = backend.execute(config)
    backend.clean(config)

    # Save the resolved config
    OmegaConf.save(config, ".hydra/config.yaml", resolve=True)

    df = benchmark.to_pandas()
    df.to_csv("results.csv", index_label="id")
def test_instantiate_classes(
    modulepath: str,
    classname: str,
    cfg: Any,
    passthrough_args: Any,
    passthrough_kwargs: Any,
    expected: Any,
) -> None:
    full_class = f"hydra_configs.torchvision.{modulepath}.{classname}Conf"
    schema = OmegaConf.structured(get_class(full_class))
    cfg = OmegaConf.merge(schema, cfg)
    obj = instantiate(cfg, *passthrough_args, **passthrough_kwargs)

    assert isinstance(obj, type(expected))
Exemplo n.º 8
0
    def __init__(self, config: DictConfig, processors: list):
        self.logger = logging.getLogger(self.__class__.__name__)

        #
        # config
        #
        default_config = OmegaConf.load(os.path.join(os.path.dirname(__file__), 'config', 'bigpipe_response.yaml'))
        self.conf = OmegaConf.merge(default_config, config)

        #
        # Install js dependencies
        #
        self.logger.info("Installing javascript dependencies.")

        BigpipeSettings.validate_rendered_output_path(self.conf)

        javascript_manager = JavascriptManager(self.conf)
        self.javascript_folder = javascript_manager.javascript_folder

        #
        # Validate config. this is after installing javascript.
        # since processors input folders could be inside the node module folder
        #
        BigpipeSettings.validate_settings(self.conf)

        #
        # Set render default options
        #
        self.default_render_option = BigpipeRenderOptions(
            js_processor_name=self.conf.javascript.default_processor,
            css_processor_name=self.conf.css.default_processor,
            i18n_processor_name=self.conf.i18n.default_processor,
            js_bundle_link_dependencies=self.conf.javascript.bundle_link_dependencies,
            js_dom_bind=get_class(self.conf.javascript.dom_bind)(),
            css_bundle_link_dependencies=self.conf.css.bundle_link_dependencies,
            css_complete_dependencies_by_js=self.conf.css.complete_dependencies_by_js,
        )


        #
        # processors manager
        #
        from bigpipe_response.processors_manager import ProcessorsManager
        self.processors_manager = ProcessorsManager(self.conf, self.javascript_folder, processors)

        self.logger.info("Bigpipe Response Ready.")
Exemplo n.º 9
0
    def prepare_data(self):
        path = osp.join(
            osp.dirname(osp.realpath(__file__)), "..", "..", "data", self.NAME
        )

        dataset = OmegaConf.to_container(self._dataset)
        self.evaluator = Evaluator(dataset["params"]["name"])

        dataset["params"]["transform"] = self._transform
        dataset["params"]["root"] = path
        dataset_cls = get_class(dataset["_target_"])

        self.dataset = dataset_cls(**dataset["params"])
        self.split_idx = self.dataset.get_idx_split()
        self.data = self.dataset[0]
        self.data.adj_t = self.data.adj_t.to_symmetric()
        self.data.adj_t.storage._row.long()
        self.data.adj_t.storage._col.long()
Exemplo n.º 10
0
 def __init__(
     self,
     downstream_model_type: str,
     backbone: HFBackboneConfig,
     optimizer: OptimizerConfig = OptimizerConfig(),
     scheduler: SchedulerConfig = SchedulerConfig(),
     instantiator: Optional[Instantiator] = None,
     tokenizer: Optional[PreTrainedTokenizerBase] = None,
     pipeline_kwargs: Optional[dict] = None,
     **model_data_kwargs,
 ) -> None:
     self.save_hyperparameters()
     model_cls: Type["AutoModel"] = get_class(downstream_model_type)
     model = model_cls.from_pretrained(
         backbone.pretrained_model_name_or_path, **model_data_kwargs)
     super().__init__(model=model,
                      optimizer=optimizer,
                      scheduler=scheduler,
                      instantiator=instantiator)
     self._tokenizer = tokenizer  # necessary for hf_pipeline
     self._hf_pipeline = None
     self._hf_pipeline_kwargs = pipeline_kwargs or {}
Exemplo n.º 11
0
    def __init__(self, *args, **kwargs):

        defaulTasksMixin = kwargs.get("defaulTasksMixin")
        assert defaulTasksMixin is not None

        mixins = [instantiate(c, *args, **kwargs) for c in defaulTasksMixin]

        named_funcs = {
            mixin: [f for f in dir(mixin) if "__" not in f]
            for mixin in mixins
        }

        func_names = sum(named_funcs.values(), [])
        assert len(func_names) == len(
            set(func_names)
        ), "The Tasks Mixin are overlapping. Should not be happening !"

        targets_mixin = [get_class(c._target_) for c in defaulTasksMixin]
        if len(self.__class__.__bases__) > 1:
            self.__class__.__bases__ = (self.__class__.__bases__[0], )
        for t_cls in targets_mixin:
            self.__class__.__bases__ += (t_cls, )
Exemplo n.º 12
0
def run(
    x: Any,
    instantiator: Instantiator,
    checkpoint_path: Optional[str] = None,
    task: TaskConfig = TaskConfig(),
    model_data_kwargs: Optional[Dict[str, Any]] = None,
    tokenizer: Optional[HFTokenizerConfig] = None,
    pipeline_kwargs: Optional[dict] = None,  # mostly for the device
    predict_kwargs: Optional[dict] = None,
) -> List[Dict[str, Any]]:
    model: HFTransformer
    if checkpoint_path:
        model = get_class(task._target_).load_from_checkpoint(checkpoint_path)
    else:
        model = instantiator.model(
            task, model_data_kwargs=model_data_kwargs, tokenizer=tokenizer, pipeline_kwargs=pipeline_kwargs
        )

    predict_kwargs = predict_kwargs or {}
    if isinstance(x, Mapping):
        return model.hf_predict(**x, **predict_kwargs)
    else:
        return model.hf_predict(x, **predict_kwargs)
Exemplo n.º 13
0
    def validate_settings(config):
        BigpipeSettings.validate_rendered_output_path(config)

        BigpipeSettings.validate_folder_name(config.rendered_output_container,
                                             'rendered_output_container')

        if not isinstance(config.is_production_mode, bool):
            raise InvalidConfiguration(
                'is_production_mode must be of type boolean')

        from bigpipe_response.javascript_dom_bind.javascript_dom_bind import JavascriptDOMBind
        #
        # path, resource = RemoteJsProcessor.build_js_resource(config.processors.js.javascript_handler)
        # if not resource_exists(path, resource):
        #     raise InvalidConfiguration('config.processors.js.javascript_handler must be set to a javascript file')

        if JavascriptDOMBind not in get_class(
                config.javascript.dom_bind).__bases__:
            raise InvalidConfiguration(
                'config.processors.js.js_dom_bind must be set and instance of JavascriptDOMBind'
            )

        if config.css.complete_dependencies_by_js is None:
            raise InvalidConfiguration(
                'config.processors.css.complete_dependencies_by_js must be set to boolean'
            )

        if config.css.bundle_link_dependencies is None:
            raise InvalidConfiguration(
                'config.processors.css.bundle_link_dependencies must be set to boolean'
            )

        if not config.remote.port_start:
            raise InvalidConfiguration(
                'config.processors.js.remote_port_start must be set to a port number'
            )

        if not config.remote.port_count:
            raise InvalidConfiguration(
                'config.processors.js.remote_port_count must be set to number of ports to scan'
            )

        for key, conf_processors in config.processors.items():

            if 'processor_name' not in conf_processors:
                raise InvalidConfiguration(
                    'processor processor_name must be set')

            if '_target_' not in conf_processors:
                raise InvalidConfiguration('processor class must be set')

            processor_classes = get_class(
                conf_processors['_target_']).__bases__
            if BaseFileProcessor in processor_classes:

                if not conf_processors.source_paths:
                    raise InvalidConfiguration(
                        'processor `{}`. `source_paths` is missing'.format(
                            conf_processors))

                source_paths = OmegaConf.to_container(
                    conf_processors.source_paths, resolve=True)

                if source_paths and not isinstance(source_paths, list):
                    raise InvalidConfiguration(
                        'processor `{}` "source_paths " must as list'.format(
                            conf_processors))

                for sp_index in range(len(source_paths)):
                    source_base_path = source_paths[sp_index]
                    if not os.path.exists(source_base_path):
                        raise InvalidConfiguration(
                            'processor `{}` source_paths directory dose not exists. `{}`'
                            .format(conf_processors, source_base_path))

                if not conf_processors.source_ext or not isinstance(
                        OmegaConf.to_container(conf_processors.source_ext,
                                               resolve=True), list):
                    raise InvalidConfiguration(
                        'processors named `{}`. source_ext musy be a populated list '
                        .format(conf_processors.processor_name))

                if not conf_processors.target_ext:
                    raise InvalidConfiguration(
                        'processors named `{}`. target_ext must be set')

            if RemoteJsFileProcessor in processor_classes or RemoteJsProcessor in processor_classes:

                if not conf_processors.javascript_handler:
                    raise InvalidConfiguration(
                        'processors named `{}`. javascript_handler must be set.'
                        .format(conf_processors.javascript_handler))

                if not conf_processors.javascript_handler.strip().lower(
                ).endswith('.js'):
                    raise InvalidConfiguration(
                        'processors named `{}`. javascript_handler must be with js extension.'
                        .format(conf_processors.javascript_handler))
Exemplo n.º 14
0
def test_get_class(path: str, expected_type: type) -> None:
    assert utils.get_class(path) == expected_type
Exemplo n.º 15
0
    def sweep(self, arguments: List[str]) -> None:
        assert self.config is not None
        assert self.launcher is not None
        assert self.job_idx is not None

        parser = OverridesParser.create()
        parsed = parser.parse_overrides(arguments)

        search_space = dict(self.search_space)
        fixed_params = dict()
        for override in parsed:
            value = create_optuna_distribution_from_override(override)
            if isinstance(value, BaseDistribution):
                search_space[override.get_key_element()] = value
            else:
                fixed_params[override.get_key_element()] = value
        # Remove fixed parameters from Optuna search space.
        for param_name in fixed_params:
            if param_name in search_space:
                del search_space[param_name]

        samplers = {
            "tpe": "optuna.samplers.TPESampler",
            "random": "optuna.samplers.RandomSampler",
            "cmaes": "optuna.samplers.CmaEsSampler",
            "nsgaii": "optuna.samplers.NSGAIISampler",
            "motpe": "optuna.samplers.MOTPESampler",
        }
        if self.optuna_config.sampler.name not in samplers:
            raise NotImplementedError(
                f"{self.optuna_config.sampler} is not supported by Optuna sweeper."
            )

        sampler_class = get_class(samplers[self.optuna_config.sampler.name])
        sampler = sampler_class(seed=self.optuna_config.seed)

        directions: List[str]
        if isinstance(self.optuna_config.direction, MutableSequence):
            directions = [
                d.name if isinstance(d, Direction) else d
                for d in self.optuna_config.direction
            ]
        else:
            if isinstance(self.optuna_config.direction, str):
                directions = [self.optuna_config.direction]
            else:
                directions = [self.optuna_config.direction.name]

        study = optuna.create_study(
            study_name=self.optuna_config.study_name,
            storage=self.optuna_config.storage,
            sampler=sampler,
            directions=directions,
            load_if_exists=True,
        )
        log.info(f"Study name: {study.study_name}")
        log.info(f"Storage: {self.optuna_config.storage}")
        log.info(f"Sampler: {self.optuna_config.sampler.name}")
        log.info(f"Directions: {directions}")

        batch_size = self.optuna_config.n_jobs
        n_trials_to_go = self.optuna_config.n_trials

        while n_trials_to_go > 0:
            batch_size = min(n_trials_to_go, batch_size)

            trials = [study._ask() for _ in range(batch_size)]
            overrides = []
            for trial in trials:
                for param_name, distribution in search_space.items():
                    trial._suggest(param_name, distribution)

                params = dict(trial.params)
                params.update(fixed_params)
                overrides.append(
                    tuple(f"{name}={val}" for name, val in params.items()))

            returns = self.launcher.launch(overrides,
                                           initial_job_idx=self.job_idx)
            self.job_idx += len(returns)
            for trial, ret in zip(trials, returns):
                values: Optional[List[float]] = None
                state: optuna.trial.TrialState = optuna.trial.TrialState.COMPLETE
                try:
                    if len(directions) == 1:
                        try:
                            values = [float(ret.return_value)]
                        except (ValueError, TypeError):
                            raise ValueError(
                                f"Return value must be float-castable. Got '{ret.return_value}'."
                            ).with_traceback(sys.exc_info()[2])
                    else:
                        try:
                            values = [float(v) for v in ret.return_value]
                        except (ValueError, TypeError):
                            raise ValueError(
                                "Return value must be a list or tuple of float-castable values."
                                f" Got '{ret.return_value}'.").with_traceback(
                                    sys.exc_info()[2])
                        if len(values) != len(directions):
                            raise ValueError(
                                "The number of the values and the number of the objectives are"
                                f" mismatched. Expect {len(directions)}, but actually {len(values)}."
                            )
                    study._tell(trial, state, values)
                except Exception as e:
                    state = optuna.trial.TrialState.FAIL
                    study._tell(trial, state, values)
                    raise e

            n_trials_to_go -= batch_size

        results_to_serialize: Dict[str, Any]
        if len(directions) < 2:
            best_trial = study.best_trial
            results_to_serialize = {
                "name": "optuna",
                "best_params": best_trial.params,
                "best_value": best_trial.value,
            }
            log.info(f"Best parameters: {best_trial.params}")
            log.info(f"Best value: {best_trial.value}")
        else:
            best_trials = study.best_trials
            pareto_front = [{
                "params": t.params,
                "values": t.values
            } for t in best_trials]
            results_to_serialize = {
                "name": "optuna",
                "solutions": pareto_front,
            }
            log.info(f"Number of Pareto solutions: {len(best_trials)}")
            for t in best_trials:
                log.info(f"    Values: {t.values}, Params: {t.params}")
        OmegaConf.save(
            OmegaConf.create(results_to_serialize),
            f"{self.config.hydra.sweep.dir}/optimization_results.yaml",
        )
Exemplo n.º 16
0
def test_get_class(path, expected_type):
    assert utils.get_class(path) == expected_type
Exemplo n.º 17
0
def test_discover(plugin_type: Type[Plugin], expected: List[str]) -> None:
    plugins = Plugins.instance().discover(plugin_type)
    expected_classes = [get_class(c) for c in expected]
    for ex in expected_classes:
        assert ex in plugins
Exemplo n.º 18
0
from hydra.utils import get_class, instantiate
from omegaconf import OmegaConf
from torch import Tensor

cfg = {} 

full_class = f"gen.configen_tests.utils.data.dataset.TensorDatasetConf"
schema = OmegaConf.structured(get_class(full_class))
cfg = OmegaConf.merge(schema, cfg)
obj = instantiate(cfg, tensors=(Tensor([1])))

print(obj)
Exemplo n.º 19
0
    def sweep(self, arguments: List[str]) -> None:
        assert self.config is not None
        assert self.launcher is not None
        assert self.job_idx is not None

        parser = OverridesParser.create()
        parsed = parser.parse_overrides(arguments)

        search_space = dict(self.search_space)
        fixed_params = dict()
        for override in parsed:
            value = create_optuna_distribution_from_override(override)
            if isinstance(value, BaseDistribution):
                search_space[override.get_key_element()] = value
            else:
                fixed_params[override.get_key_element()] = value
        # Remove fixed parameters from Optuna search space.
        for param_name in fixed_params:
            if param_name in search_space:
                del search_space[param_name]

        samplers = {
            "tpe": "optuna.samplers.TPESampler",
            "random": "optuna.samplers.RandomSampler",
            "cmaes": "optuna.samplers.CmaEsSampler",
        }
        if self.optuna_config.sampler.name not in samplers:
            raise NotImplementedError(
                f"{self.optuna_config.sampler} is not supported by Optuna sweeper."
            )

        sampler_class = get_class(samplers[self.optuna_config.sampler.name])
        sampler = sampler_class(seed=self.optuna_config.seed)

        # TODO (toshihikoyanase): Remove type-ignore when optuna==2.4.0 is released.
        study = optuna.create_study(  # type: ignore
            study_name=self.optuna_config.study_name,
            storage=self.optuna_config.storage,
            sampler=sampler,
            direction=self.optuna_config.direction.name,
            load_if_exists=True,
        )
        log.info(f"Study name: {study.study_name}")
        log.info(f"Storage: {self.optuna_config.storage}")
        log.info(f"Sampler: {self.optuna_config.sampler.name}")
        log.info(f"Direction: {self.optuna_config.direction.name}")

        batch_size = self.optuna_config.n_jobs
        n_trials_to_go = self.optuna_config.n_trials

        while n_trials_to_go > 0:
            batch_size = min(n_trials_to_go, batch_size)

            trials = [study._ask() for _ in range(batch_size)]
            overrides = []
            for trial in trials:
                for param_name, distribution in search_space.items():
                    trial._suggest(param_name, distribution)

                params = dict(trial.params)
                params.update(fixed_params)
                overrides.append(
                    tuple(f"{name}={val}" for name, val in params.items()))

            returns = self.launcher.launch(overrides,
                                           initial_job_idx=self.job_idx)
            self.job_idx += len(returns)
            for trial, ret in zip(trials, returns):
                # TODO (toshihikoyanase): Remove type-ignore when optuna==2.4.0 is released.
                study._tell(trial, optuna.trial.TrialState.COMPLETE,
                            ret.return_value)  # type: ignore
            n_trials_to_go -= batch_size

        best_trial = study.best_trial
        results_to_serialize = {
            "name": "optuna",
            "best_params": best_trial.params,
            "best_value": best_trial.value,
        }
        OmegaConf.save(
            OmegaConf.create(results_to_serialize),
            f"{self.config.hydra.sweep.dir}/optimization_results.yaml",
        )
        log.info(f"Best parameters: {best_trial.params}")
        log.info(f"Best value: {best_trial.value}")
Exemplo n.º 20
0
def test_discover(plugin_type, expected):
    plugins = Plugins.discover(plugin_type)
    expected_classes = [get_class(c) for c in sorted(expected)]
    for ex in expected_classes:
        assert ex in plugins