Exemplo n.º 1
0
    def test_eat_star_bs1_1d(self):
        'test 1d eat-star with example-1 derived from the ball_string system'

        settings = HylaaSettings(0.01, 2.0)
        array = np.array
        ha = LinearHybridAutomaton('Test Automaton')
        ha.variables = ["x"]
        mode = ha.new_mode('test_mode')

        center = array([0.])

        # x = 0.5 * alpha    (2x = alpha)

        # 0 <= alpha <= 1.0   -> (0 <= x <= 0.5)
        cur_star = Star(settings, center, array([[0.5]]), [ \
           LinearConstraint(array([1.]), 1.0), \
           LinearConstraint(array([-1.]), 0.0)], \
           None, mode)

        # 2.0 <= alpha <= 3.0    -> (1.0 <= x <= 1.5)
        new_star = Star(settings, center, array([[0.5]]), [ \
           LinearConstraint(array([1.]), 3.0), \
           LinearConstraint(array([-1.]), -2.0)], \
           None, mode)

        cur_star.eat_star(new_star)

        # should be 0.0 <= alpha <= 3.0
        self.assertAlmostEqual(cur_star.constraint_list[0].value, 3.0)
        self.assertAlmostEqual(cur_star.constraint_list[1].value, 0.0)
Exemplo n.º 2
0
    def test_eat_star_bs2_1d(self):
        'test 1d eat-star derived from example-2 of the ball_string system'

        array = np.array
        settings = HylaaSettings(0.01, 2.0)
        ha = LinearHybridAutomaton('Test Automaton')
        ha.variables = ["x"]
        mode = ha.new_mode('test_mode')
        center = array([0.])
        basis_matrix = array([[1.0]], dtype=float)

        # -alpha <= 1.0  ----> -1.0 <= alpha
        # 2 * alpha <= -1   ----> alpha <= -0.5
        cur_star = Star(settings, center, basis_matrix, [\
           LinearConstraint(array([-1.]), 1.0), \
           LinearConstraint(array([2.0]), -1.0),\
           ], \
           None, mode)

        # -0.7 <= alpha <= -0.6
        new_star = Star(settings, center, basis_matrix, [\
           LinearConstraint(array([-1.]), 0.7), \
           LinearConstraint(array([1.]), -0.6), \
           ], \
           None, mode)

        cur_star.eat_star(new_star)

        # should be unchanged: -0.0 <= alpha and 2 * alpha <= 1.0
        self.assertAlmostEqual(cur_star.constraint_list[0].value, 1.0)
        self.assertAlmostEqual(cur_star.constraint_list[1].value, -1.0)
Exemplo n.º 3
0
    def test_center_into_constraints_complex(self):
        '''test that center_into_constraints doesn't modify the stars'''

        mode = make_debug_mode()
        array = np.array

        star = Star(HylaaSettings(0.01, 2.0),
                    array([-0.11060623, -0.62105371]),
                    array([[-0.12748444, -6.33082449],
                           [0.06330825, -0.3807174]]),
                    [
                        LinearConstraint(array([1., 0.]), -0.95),
                        LinearConstraint(array([-1., 0.]), 1.05),
                        LinearConstraint(array([0., 1.]), 0.1),
                        LinearConstraint(array([0., -1.]), 0.1),
                        LinearConstraint(array([6.33082449, 0.3807174]),
                                         -0.6210537093866693),
                        LinearConstraint(array([0.12748444, -0.06330825]),
                                         -0.11060623185202963),
                        LinearConstraint(array([-0.12748444, 0.06330825]),
                                         1.1106062318520296)
                    ],
                    None,
                    mode,
                    extra_init=(None, 20, 0))

        star2 = star.clone()
        star2.center_into_constraints(star2.vector_to_star_basis(star2.center))

        self.check_stars_equal(star, star2)
Exemplo n.º 4
0
    def test_boundaries_simple(self):
        'check the boundaries for a harmonic oscillator after some time elapses'

        Star.init_plot_vecs(2, TestStar.plot_settings)
        center = [0, 0]

        # basis vectors after some time elapsed
        vec1 = [0.98510371, -0.09884004]
        vec2 = [0.09884004, 0.98510371]

        basis = [vec1, vec2]

        a_list = [[1, 0], [-1, 0], [0, 1], [0, -1]]
        b_list = [-4, 5, 1, 0]

        star = make_star(center, basis, a_list, b_list)

        Star.plot_vecs = [
            np.array([0, -1], dtype=float),  # max(y)
            np.array([-1, 0], dtype=float),  # max(x)
            np.array([1, 0], dtype=float)
        ]  # min(x)

        verts = star.verts()

        self.assertGreater(verts[0][1], 1.0)

        self.assertLess(verts[1][0], -3.0)
        self.assertGreater(verts[1][0], -4.0)

        self.assertGreater(verts[2][0], -5.0)
Exemplo n.º 5
0
    def __init__(self, ha, hylaa_settings):

        assert isinstance(hylaa_settings, HylaaSettings)
        assert isinstance(ha, LinearHybridAutomaton)

        #if not openblas.has_openblas():
        #    print "Performance warning: OpenBLAS not detected. Matrix operations may be slower than necessary."
        #    print "Is numpy linked with OpenBLAS? (hylaa.operblas.has_openblas() returned False)"

        if hylaa_settings.simulation.threads is not None:
            openblas.set_num_threads(hylaa_settings.simulation.threads)

        self.hybrid_automaton = ha
        self.settings = hylaa_settings
        self.num_vars = len(ha.variables)

        if self.settings.plot.plot_mode != PlotSettings.PLOT_NONE:
            Star.init_plot_vecs(self.num_vars, self.settings.plot)

        self.plotman = PlotManager(self, self.settings.plot)

        # computation
        self.waiting_list = WaitingList()

        self.cur_state = None  # a Star object
        self.cur_step_in_mode = None  # how much dwell time in current continuous post
        self.max_steps_remaining = None  # bound on num steps left in current mode ; assigned on pop
        self.cur_sim_bundle = None  # set on pop

        self.reached_error = False
        self.result = None  # a HylaaResult... assigned on run()

        if self.settings.plot.plot_mode == PlotSettings.PLOT_NONE:
            self.settings.simulation.use_presimulation = True
Exemplo n.º 6
0
    def test_eat_star_bs2_2d(self):
        'test 2d eat-star derived from example-2 of the ball_string system'

        array = np.array
        mode = make_debug_mode()
        settings = HylaaSettings(0.01, 2.0)
        center = array([0., 0.])

        basis_matrix = array([[1.0, 0], [0, 1.0]], dtype=float)

        cur_star = Star(settings, center, basis_matrix, [\
           LinearConstraint(array([-1., 0.]), 1.0), \
           LinearConstraint(array([0., 1.]), 2.1), \
           LinearConstraint(array([0., -1.]), -2.0), \
           LinearConstraint(array([2.0, 0.]), -1),\
           ], \
           None, mode)

        new_star = Star(settings, center, basis_matrix, [\
           LinearConstraint(array([-1., 0.]), 0.7), \
           LinearConstraint(array([1., 0.]), -0.6), \
           LinearConstraint(array([0., 1.]), 2.3), \
           LinearConstraint(array([0., -1.]), -2.2), \
           ], \
           None, mode)

        cur_star.eat_star(new_star)

        new_point = new_star.get_feasible_point()
        self.assertTrue(cur_star.contains_point(new_point))
Exemplo n.º 7
0
    def test_eat_tricky2(self):
        'test 2d eat-star derived from a tricky example with the ball_string system'

        array = np.array
        mode = make_debug_mode()
        settings = HylaaSettings(0.01, 2.0)
        center = array([0., 0.])

        basis_matrix = array([[-1., -1.], [-0.01, -0.4]])

        cur_star = Star(settings, center, basis_matrix, [\
           LinearConstraint(array([-1., 0.]), 0.5), \
           LinearConstraint(array([0., -1.]), -1.), \
           LinearConstraint(array([14., 0.1]), -5.)], \
           None, mode)

        new_star = Star(settings, center, basis_matrix, [\
           LinearConstraint(array([-1., 0.]), 0.5), \
           LinearConstraint(array([0., -1.]), -1.), \
           LinearConstraint(array([14.5, 0.15]), 0.),\
           ], \
           None, mode)

        cur_star.eat_star(new_star)

        new_point = new_star.get_feasible_point(standard_dir=[-1, 0])

        # move towards inside a little
        new_point -= 1e-6 * np.array([-1., 0.], dtype=float)

        self.assertTrue(cur_star.contains_point(new_point))
Exemplo n.º 8
0
    def test_eat_star_bs_tricky(self):
        'test 2d eat-star derived from a tricky example with the ball_string system'

        array = np.array
        mode = make_debug_mode()

        cur_star = Star(HylaaSettings(0.01, 2.0), array([0., 0.]), array([[-1.39364934, -6.33082449],\
           [-0.01283523, -0.3807174]]), [LinearConstraint(array([1., 0.]), -0.65858417090053001), \
           LinearConstraint(array([-1., 0.]), 0.7585841709005301), \
           LinearConstraint(array([0., 1.]), 2.0388429332115034), \
           LinearConstraint(array([0., -1.]), -1.8388429332115035), \
           LinearConstraint(array([6.33082449, 0.3807174]), 1.9619999999999997), \
           LinearConstraint(array([0.12748444, -0.06330825]), -0.19619999994184489), \
           LinearConstraint(array([-0.12748444, 0.06330825]), 1.1961999999418449), \
           LinearConstraint(array([1.39364934, 0.01283523]), -1.0000000000000002)], \
           None, mode, extra_init=(array([[-1.39364934, -6.33082449],\
           [-0.01283523, -0.3807174]]), 40, 0))

        new_star = Star(HylaaSettings(0.01, 2.0), array([0., 0.]), array([[-1.45695758, -6.33082449],\
           [-0.0166424, -0.3807174]]), [LinearConstraint(array([1., 0.]), -0.66180203160723172), \
           LinearConstraint(array([-1., 0.]), 0.76180203160723181), \
           LinearConstraint(array([0., 1.]), 2.3500231188180134), \
           LinearConstraint(array([0., -1.]), -2.1500231188180132), \
           LinearConstraint(array([6.33082449, 0.3807174]), 2.0600999999999994), \
           LinearConstraint(array([0.12748444, -0.06330825]), -0.21631049992724288), \
           LinearConstraint(array([-0.12748444, 0.06330825]), 1.2163104999272427), \
           LinearConstraint(array([-1.39364934, -0.01283523]), 1.0004904999853983), \
           LinearConstraint(array([1.45695758, 0.0166424]), -1.0000000000000002)], \
           None, mode, extra_init=(array([[-1.45695758, -6.33082449],\
           [-0.0166424, -0.3807174]]), 41, 0))

        cur_star.eat_star(new_star)

        new_point = new_star.get_feasible_point(standard_dir=[5, -1])
        self.assertTrue(cur_star.contains_point(new_point))
Exemplo n.º 9
0
    def test_eat_star_bs1_2d(self):
        'test 2d eat-star derived from example-1 of the ball_string system'

        array = np.array
        mode = make_debug_mode()
        center = array([0., 0.])

        basis_matrix = array([[1.0, 0], [0, 0.5]])

        cur_star = Star(HylaaSettings(0.01, 2.0), center, basis_matrix, [ \
           LinearConstraint(array([1, 0]), 1), \
           LinearConstraint(array([-1., 0.]), 0), \
           LinearConstraint(array([0., 1.]), 1.0), \
           LinearConstraint(array([0., -1.]), 0.0)], \
           None, mode)

        new_star = Star(HylaaSettings(0.01, 2.0), center, basis_matrix, [ \
           LinearConstraint(array([1, 0]), 1), \
           LinearConstraint(array([-1, 0]), 0), \
           LinearConstraint(array([0., 1.]), 3.0), \
           LinearConstraint(array([0., -1.]), -2.0)], \
           None, mode)

        cur_star.eat_star(new_star)

        new_point = new_star.get_feasible_point()
        self.assertTrue(cur_star.contains_point(new_point))
Exemplo n.º 10
0
def make_init_star(ha, hylaa_settings):
    '''returns a star'''

    bounds_list = []
    dims = ha.modes.values()[0].a_matrix_csr.shape[0]

    for dim in xrange(dims):
        if dim == 270: # input 1
            lb = 0
            ub = 0.1
        elif dim == 271: # input 2
            lb = 0.8
            ub = 1.0
        elif dim == 272: # input 3
            lb = 0.9
            ub = 1.0
        elif dim < 270:
            lb = -0.0001
            ub = 0.0001
        else:
            raise RuntimeError('Unknown dimension: {}'.format(dim))

        bounds_list.append((lb, ub))

    init_space, init_mat, init_mat_rhs, init_range_tuples = bounds_list_to_init(bounds_list)

    return Star(hylaa_settings, ha.modes['mode'], init_space, init_mat, init_mat_rhs, \
                init_range_tuples=init_range_tuples)
Exemplo n.º 11
0
    def test_boundaries_optimized(self):
        'test finding the boundaries in an optimized fashion'

        Star.init_plot_vecs(2, TestStar.plot_settings)

        hr = HyperRectangle([
            (0, 1),
            (0, 1),
        ])
        star = init_hr_to_star(make_settings(), hr, TestStar.loc)

        start_op = LpInstance.total_optimizations()

        verts = star.verts()

        num_op = LpInstance.total_optimizations() - start_op

        self.assertEqual(len(verts), 5)
        self.assertLess(num_op, 100)
Exemplo n.º 12
0
    def test_clone(self):
        'test that clone is working as expected'

        mode = make_debug_mode()

        array = np.array

        star = Star(
            HylaaSettings(0.1, 1.0),
            array([-0.11060623, -0.62105371]),
            array([[-0.12748444, -6.33082449], [0.06330825, -0.3807174]]), [
                LinearConstraint(array([1., 0.]), -0.76877967521149881),
                LinearConstraint(array([-1., 0.]), 0.8687796752114989),
                LinearConstraint(array([0., 1.]), -1.2821810092782602),
                LinearConstraint(array([0., -1.]), 1.4821810092782604)
            ],
            None,
            mode,
            extra_init=(None, 20, 0))

        self.check_stars_equal(star, star.clone())
Exemplo n.º 13
0
    def test_center_into_constraints(self):
        '''test that center_into_constraints doesn't modify the stars'''

        mode = make_debug_mode()
        array = np.array

        star = Star(HylaaSettings(0.1, 1.0),
                    array([5.0, 5.0]),
                    array([[0.707, 0.707], [-0.707, 0.707]]), [
                        LinearConstraint(array([1., 0.]), 1),
                        LinearConstraint(array([-1., 0.]), 0.),
                        LinearConstraint(array([0., 1.]), 1),
                        LinearConstraint(array([0., -1.]), 0)
                    ],
                    None,
                    mode,
                    extra_init=(None, 20, 0))

        star2 = star.clone()
        star2.center_into_constraints(star2.vector_to_star_basis(star2.center))

        self.check_stars_equal(star, star2)
Exemplo n.º 14
0
def make_star(center, basis, a_list, b_list):
    'make a star without a parent'

    constraint_list = []

    assert len(a_list) == len(b_list)

    for i in xrange(len(a_list)):
        vector = np.array(a_list[i], dtype=float)
        constraint_list.append(LinearConstraint(vector, b_list[i]))

    mode = make_debug_mode()
    parent = InitParent(mode)

    return Star(make_settings(), np.array(center, dtype=float),
                np.array(basis, dtype=float), constraint_list, parent, mode)
Exemplo n.º 15
0
def make_init_star(ha, hylaa_settings):
    '''returns a star'''

    bounds_list = []
    dims = ha.modes.values()[0].a_matrix_csr.shape[0]

    for dim in xrange(dims):
        if dim < 10:
            bounds_list.append((0.0002, 0.00025))
        elif dim == 25:
            bounds_list.append((-0.0001, 0.0001))
        elif dim == 48:  # affine input effects term
            bounds_list.append((0.8, 1.0))
        else:
            bounds_list.append((0.0, 0.0))

    init_space, init_mat, init_mat_rhs, init_range_tuples = bounds_list_to_init(
        bounds_list)

    return Star(hylaa_settings, ha.modes['mode'], init_space, init_mat, init_mat_rhs, \
                init_range_tuples=init_range_tuples)
Exemplo n.º 16
0
    def test_eat_star_bs3_2d(self):
        'test 2d eat-star derived from example 3 with the ball_string system'

        array = np.array
        mode = make_debug_mode()
        settings = HylaaSettings(0.01, 2.0)
        center = array([0., 0.])

        bm = array([[1.0, 1.0], [0., 1.0]])

        cur_star = Star(settings, center, bm, [\
           LinearConstraint(array([-1., 0.]), 1.), \
           LinearConstraint(array([1., 0.]), 0.),\
           LinearConstraint(array([0., -1.]), 0.), \
           LinearConstraint(array([0., 1.]), 1.), \
           ], \
           None, mode)

        new_star = Star(settings, center, bm, [\
           LinearConstraint(array([-1., 0.]), 1.), \
           LinearConstraint(array([1., 0.]), 0.), \
           LinearConstraint(array([0., -1]), -2.), \
           LinearConstraint(array([0., 1.]), 3.), \
           ], \
           None, mode)

        cur_star.eat_star(new_star)

        # check that constraint #4 was expanded correctly
        self.assertAlmostEqual(cur_star.constraint_list[0].value, 1.0)
        self.assertAlmostEqual(cur_star.constraint_list[1].value, 0.0)
        self.assertAlmostEqual(cur_star.constraint_list[2].value, 0.0)
        self.assertAlmostEqual(cur_star.constraint_list[3].value, 3.0)

        new_point = new_star.get_feasible_point()
        self.assertTrue(cur_star.contains_point(new_point))
Exemplo n.º 17
0
    def setUp(self):
        'setup function'
        Timers.reset()

        Star.init_plot_vecs(2, make_settings().plot)
Exemplo n.º 18
0
    def test_add_box_dir(self):
        'test 2d eat-star with add box directions'

        array = np.array
        mode = make_debug_mode()

        cur_star = Star(HylaaSettings(0.01, 2.0), array([0., 0.]), array([[-1.39364934, -6.33082449],\
           [-0.01283523, -0.3807174]]), [LinearConstraint(array([1., 0.]), -0.65858417090053001), \
           LinearConstraint(array([-1., 0.]), 0.7585841709005301), \
           LinearConstraint(array([0., 1.]), 2.0388429332115034), \
           LinearConstraint(array([0., -1.]), -1.8388429332115035), \
           LinearConstraint(array([6.33082449, 0.3807174]), 1.9619999999999997), \
           LinearConstraint(array([0.12748444, -0.06330825]), -0.19619999994184489), \
           LinearConstraint(array([-0.12748444, 0.06330825]), 1.1961999999418449), \
           LinearConstraint(array([1.39364934, 0.01283523]), -1.0000000000000002)], \
           None, mode, extra_init=(array([[-1.39364934, -6.33082449],\
           [-0.01283523, -0.3807174]]), 40, 0))

        new_star = Star(HylaaSettings(0.01, 2.0), array([0., 0.]), array([[-1.45695758, -6.33082449],\
           [-0.0166424, -0.3807174]]), [LinearConstraint(array([1., 0.]), -0.66180203160723172), \
           LinearConstraint(array([-1., 0.]), 0.76180203160723181), \
           LinearConstraint(array([0., 1.]), 2.3500231188180134), \
           LinearConstraint(array([0., -1.]), -2.1500231188180132), \
           LinearConstraint(array([6.33082449, 0.3807174]), 2.0600999999999994), \
           LinearConstraint(array([0.12748444, -0.06330825]), -0.21631049992724288), \
           LinearConstraint(array([-0.12748444, 0.06330825]), 1.2163104999272427), \
           LinearConstraint(array([-1.39364934, -0.01283523]), 1.0004904999853983), \
           LinearConstraint(array([1.45695758, 0.0166424]), -1.0000000000000002)], \
           None, mode, extra_init=(array([[-1.45695758, -6.33082449],\
           [-0.0166424, -0.3807174]]), 41, 0))

        # add box constraints
        for dim in xrange(cur_star.num_dims):
            vector = np.array(
                [1.0 if d == dim else 0.0 for d in xrange(cur_star.num_dims)],
                dtype=float)
            cur_star.add_std_constraint_direction(vector)
            cur_star.add_std_constraint_direction(-1 * vector)

        cur_star.eat_star(new_star)

        new_point = new_star.get_feasible_point(standard_dir=[5, -1])
        self.assertTrue(cur_star.contains_point(new_point))