type=int, default=10000, help='number of evaluation') parser.add_argument('--vis_num', type=int, default=60, help='number of visible evaluation') parser.add_argument('--multiscale', type=bool, default=False, help='enable multiscale_search') args = parser.parse_args() Config.set_model_name(args.model_name) Config.set_model_type(Config.MODEL[args.model_type]) Config.set_model_backbone(Config.BACKBONE[args.model_backbone]) Config.set_dataset_type(Config.DATA[args.dataset_type]) Config.set_dataset_path(args.dataset_path) Config.set_dataset_version(args.dataset_version) config = Config.get_config() model = Model.get_model(config) evaluate = Model.get_evaluate(config) dataset = Dataset.get_dataset(config) evaluate(model, dataset, vis_num=args.vis_num, total_eval_num=args.eval_num, enable_multiscale_search=args.multiscale)
type=str, default="Default", help= "model backbone, available options: Mobilenet, Vggtiny, Vgg19, Resnet18, Resnet50" ) parser.add_argument( "--model_name", type=str, default="default_name", help="model name,to distinguish model and determine model dir") parser.add_argument( "--dataset_path", type=str, default="./data", help="dataset path,to determine the path to load the dataset") args = parser.parse_args() #config model Config.set_model_name(args.model_name) Config.set_model_type(Config.MODEL[args.model_type]) Config.set_model_backbone(Config.BACKBONE[args.model_backbone]) Config.set_pretrain(True) #config dataset Config.set_pretrain_dataset_path(args.dataset_path) config = Config.get_config() #train model = Model.get_model(config) pretrain = Model.get_pretrain(config) dataset = Dataset.get_pretrain_dataset(config) pretrain(model, dataset)