Exemplo n.º 1
0
def get_linreg_optimal_codons(linreg_dir, aa_seq, maximum=False):
    linreg_data_fname = linreg_dir + "/linreg_data.txt"
    d = proc.load_linreg_data_file(linreg_data_fname)
    rel_cod_idxs = d["rel_cod_idxs"]
    wts = proc.load_obj(linreg_dir + "/wts.pkl")
    opt_total_seq, opt_vit_score = opt.get_optimal_codons_linreg(
        aa_seq, wts, rel_cod_idxs, maximum=maximum)
    return opt_total_seq, opt_vit_score
Exemplo n.º 2
0
def get_protein_score_dist(nn_dir, epoch, aa_seq, num_samples, nt_feats=False):
    init_data_pkl = nn_dir + "/init_data/init_data.pkl"
    params = proc.load_obj(init_data_pkl)
    rel_cod_idxs = params["rel_cod_idxs"]
    my_nn = load_lasagne_feedforward_nn(nn_dir, epoch)
    scores_sorted, cod_seqs_sorted = opt.get_score_dist(aa_seq,
                                                        my_nn,
                                                        rel_cod_idxs,
                                                        num_samples,
                                                        nt_feats=nt_feats)
    return scores_sorted, cod_seqs_sorted
Exemplo n.º 3
0
def load_lasagne_adjacency_nn(nn_dir, epoch):
    init_data_pkl = nn_dir + "/init_data/init_data.pkl"
    params = proc.load_obj(init_data_pkl)
    try:
        max_struc_start_idx = params["max_struc_start_idx"],
    except KeyError:
        max_struc_start_idx = None
    try:
        max_struc_width = params["max_struc_width"],
    except KeyError:
        max_struc_width = None
    X_tr, y_tr, X_te, y_te = proc.load_lasagne_data(
        params["gene_len_fname"],
        params["gene_seq_fname"],
        params["tr_codons_fname"],
        params["te_codons_fname"],
        params["outputs_fname"],
        rel_cod_idxs=params["rel_cod_idxs"],
        rel_nt_idxs=params["rel_nt_idxs"],
        rel_struc_idxs=params["rel_struc_idxs"],
        struc_fname=params["struc_fname"],
        max_struc_start_idx=max_struc_start_idx,
        max_struc_width=max_struc_width,
        filter_pct=params["filter_pct"])

    my_nn = lasagnenn.AdjacencyMLP(X_tr,
                                   y_tr,
                                   X_te,
                                   y_te,
                                   name=params["name"],
                                   out_dir=params["out_dir"],
                                   rel_cod_idxs=params["rel_cod_idxs"],
                                   cod_adj_idxs=params["cod_adj_idxs"],
                                   rel_nt_idxs=params["rel_nt_idxs"],
                                   nt_adj_idxs=params["nt_adj_idxs"],
                                   learning_rate=params["learning_rate"],
                                   update_method=params["update_method"],
                                   widths=params["widths"],
                                   nonlinearity=params["nonlinearity"],
                                   input_drop_rate=params["input_drop_rate"],
                                   hidden_drop_rate=params["hidden_drop_rate"],
                                   num_outputs=params["num_outputs"],
                                   momentum=params["momentum"],
                                   batch_size=params["batch_size"],
                                   reloaded=True)

    my_nn.unpickle_epoch(epoch)

    return my_nn
Exemplo n.º 4
0
def load_lasagne_feedforward_nn(nn_dir, epoch):
    init_data_pkl = nn_dir + "/init_data/init_data.pkl"
    params = proc.load_obj(init_data_pkl)
    #Kludge, take this out in the future
    if not params.get("max_struc_start_idx", False):
        params["max_struc_start_idx"] = None
    if not params.get("max_struc_width", False):
        params["max_struc_width"] = None
    if not params.get("aa_feats", False):
        params["aa_feats"] = False
    if not params.get("nonnegative", False):
        params["nonnegative"] = False
    X_tr, _, X_te, _ = proc.load_lasagne_data(
        params["gene_len_fname"],
        params["gene_seq_fname"],
        params["tr_codons_fname"],
        params["te_codons_fname"],
        params["outputs_fname"],
        rel_cod_idxs=params["rel_cod_idxs"],
        rel_nt_idxs=params["rel_nt_idxs"],
        rel_struc_idxs=params["rel_struc_idxs"],
        struc_fname=params["struc_fname"],
        max_struc_start_idx=params["max_struc_start_idx"],
        max_struc_width=params["max_struc_width"],
        aa_feats=params["aa_feats"],
        filter_pct=params["filter_pct"])

    my_nn = lasagnenn.FeedforwardMLP(
        X_tr,
        params["y_tr"],
        X_te,
        params["y_te"],
        name=params["name"],
        out_dir=params["out_dir"],
        learning_rate=params["learning_rate"],
        update_method=params["update_method"],
        widths=params["widths"],
        nonlinearity=params["nonlinearity"],
        input_drop_rate=params["input_drop_rate"],
        hidden_drop_rate=params["hidden_drop_rate"],
        num_outputs=params["num_outputs"],
        momentum=params["momentum"],
        batch_size=params["batch_size"],
        nonnegative=params["nonnegative"],
        reloaded=True)

    my_nn.unpickle_epoch(epoch)

    return my_nn
Exemplo n.º 5
0
def get_lasagne_optimal_codons(nn_dir,
                               epoch,
                               aa_seq,
                               nn_type="Feedforward",
                               maximum=False,
                               nt_feats=False):
    init_data_pkl = nn_dir + "/init_data/init_data.pkl"
    params = proc.load_obj(init_data_pkl)
    if nn_type == "Feedforward":
        my_nn = load_lasagne_feedforward_nn(nn_dir, epoch)
    elif nn_type == "Adjacency":
        my_nn = load_lasagne_adjacency_nn(nn_dir, epoch)
    elif nn_type == "Split":
        my_nn = load_lasagne_split_nn(nn_dir, epoch)
    else:
        print "nn_type must be in [Feedforward, Adjacency, Split]"
    rel_cod_idxs = params["rel_cod_idxs"]
    opt_total_seq, opt_vit_score = opt.get_optimal_codons_lasagne(
        aa_seq, my_nn, rel_cod_idxs, maximum=maximum, nt_feats=nt_feats)
    return opt_total_seq, opt_vit_score