Exemplo n.º 1
0
def get_aligned_channels(ins, chn_coords, one, ba=None, save_dir=None):

    ba = ba or AllenAtlas(25)
    depths = chn_coords[:, 1]
    xyz = np.array(ins['json']['xyz_picks']) / 1e6
    traj = one.alyx.rest('trajectories', 'list', probe_insertion=ins['id'],
                         provenance='Ephys aligned histology track')[0]
    align_key = ins['json']['extended_qc']['alignment_stored']
    feature = traj['json'][align_key][0]
    track = traj['json'][align_key][1]
    ephysalign = EphysAlignment(xyz, depths, track_prev=track,
                                feature_prev=feature,
                                brain_atlas=ba, speedy=True)
    channels_mlapdv = np.int32(ephysalign.get_channel_locations(feature, track) * 1e6)
    channels_atlas_ids = ephysalign.get_brain_locations(channels_mlapdv / 1e6)['id']

    out_files = []
    if save_dir is not None:
        f_name = Path(save_dir).joinpath('channels.mlapdv.npy')
        np.save(f_name, channels_mlapdv)
        out_files.append(f_name)

        f_name = Path(save_dir).joinpath('channels.brainLocationIds_ccf_2017.npy')
        np.save(f_name, channels_atlas_ids)
        out_files.append(f_name)

    return out_files
Exemplo n.º 2
0
    def get_channels(self, traj, ins=None, depths=None):
        if depths is None:
            depths = SITES_COORDINATES[:, 1]
        if traj['provenance'] == 'Planned' or traj['provenance'] == 'Micro-manipulator':
            ins = atlas.Insertion.from_dict(traj)
            # Deepest coordinate first
            xyz = np.c_[ins.tip, ins.entry].T
            xyz_channels = histology.interpolate_along_track(xyz, (depths +
                                                                   TIP_SIZE_UM) / 1e6)
        else:
            if ins is None:
                ins_idx = np.where(traj['probe_insertion'] == self.ins['ids'])[0][0]
                xyz = np.array(self.ins['insertions'][ins_idx]['json']['xyz_picks']) / 1e6
            else:
                xyz = np.array(ins['json']['xyz_picks']) / 1e6
            if traj['provenance'] == 'Histology track':
                xyz = xyz[np.argsort(xyz[:, 2]), :]
                xyz_channels = histology.interpolate_along_track(xyz, (depths +
                                                                       TIP_SIZE_UM) / 1e6)
            else:
                if ins is None:
                    align_key = (self.ins['insertions'][ins_idx]['json']['extended_qc']
                                 ['alignment_stored'])
                else:
                    align_key = ins['json']['extended_qc']['alignment_stored']
                feature = traj['json'][align_key][0]
                track = traj['json'][align_key][1]
                ephysalign = EphysAlignment(xyz, depths, track_prev=track,
                                            feature_prev=feature,
                                            brain_atlas=self.ba, speedy=True)
                xyz_channels = ephysalign.get_channel_locations(feature, track)

        return xyz_channels
Exemplo n.º 3
0
    def compute_similarity_matrix(self):
        """
        Computes the similarity matrix between each alignment stored in the ephys aligned
        trajectory. Similarity matrix based on number of clusters that share brain region and
        parent brain region
        """

        r = regions_from_allen_csv()

        clusters = dict()
        for iK, key in enumerate(self.align_keys_sorted):
            # Location of reference lines used for alignment
            feature = np.array(self.alignments[key][0])
            track = np.array(self.alignments[key][1])

            # Instantiate EphysAlignment object
            ephysalign = EphysAlignment(self.xyz_picks,
                                        self.depths,
                                        track_prev=track,
                                        feature_prev=feature,
                                        brain_atlas=self.brain_atlas)

            # Find xyz location of all channels
            xyz_channels = ephysalign.get_channel_locations(feature, track)
            brain_regions = ephysalign.get_brain_locations(xyz_channels)

            # Find the location of clusters along the alignment
            cluster_info = dict()
            cluster_info['brain_id'] = brain_regions['id'][self.cluster_chns]
            cluster_info['parent_id'] = r.get(
                ids=cluster_info['brain_id']).parent.astype(int)
            clusters.update({key: cluster_info})

        sim_matrix = np.zeros(
            (len(self.align_keys_sorted), len(self.align_keys_sorted)))

        for ik, key in enumerate(self.align_keys_sorted):
            for ikk, key2 in enumerate(self.align_keys_sorted):
                same_id = np.where(
                    clusters[key]['brain_id'] == clusters[key2]['brain_id'])[0]
                not_same_id = \
                    np.where(clusters[key]['brain_id'] != clusters[key2]['brain_id'])[0]
                same_parent = np.where(
                    clusters[key]['parent_id'][not_same_id] == clusters[key2]
                    ['parent_id'][not_same_id])[0]
                sim_matrix[ik, ikk] = len(same_id) + (len(same_parent) * 0.5)
        # Normalise
        sim_matrix_norm = sim_matrix / np.max(sim_matrix)

        return sim_matrix_norm
Exemplo n.º 4
0
class TestsEphysReconstruction(unittest.TestCase):

    def setUp(self):
        self.ephysalign = EphysAlignment(xyz_picks, track_prev=track_prev,
                                         feature_prev=feature_prev, brain_atlas=brain_atlas)
        self.feature = self.ephysalign.feature_init
        self.track = self.ephysalign.track_init

    def test_channel_locations(self):
        xyz_channels = self.ephysalign.get_channel_locations(self.feature, self.track,
                                                             depths=depths)
        self.assertTrue(np.all(np.isclose(xyz_channels[0, :], xyz_channels_ref[0])))
        self.assertTrue(np.all(np.isclose(xyz_channels[-1, :], xyz_channels_ref[-1])))
        brain_regions = self.ephysalign.get_brain_locations(xyz_channels)
        self.assertTrue(np.all(np.equal(np.unique(brain_regions.acronym), brain_regions_ref)))
Exemplo n.º 5
0
    def get_channels(self, alf_object, collection):
        electrodes = {}

        try:
            electrodes = self.one.load_object(self.eid, alf_object, collection=collection)
            electrodes['axial_um'] = electrodes['localCoordinates'][:, 1]
        except ALFObjectNotFound:
            _logger.warning(f'{alf_object} does not yet exist')

        if self.hist_lookup[self.histology_status] == 3:
            try:
                electrodes['atlas_id'] = electrodes['brainLocationIds_ccf_2017']
                electrodes['mlapdv'] = electrodes['mlapdv'] / 1e6
            except KeyError:
                _logger.warning('Insertion resolved but brainLocationIds_ccf_2017 attribute do not exist')

        if self.hist_lookup[self.histology_status] > 0 and 'atlas_id' not in electrodes.keys():
            if not self.brain_atlas:
                self.brain_atlas = AllenAtlas()
                self.brain_regions = self.brain_regions or self.brain_atlas.regions
            if 'localCoordinates' not in electrodes.keys():
                geometry = trace_header(version=1)
                electrodes['localCoordinates'] = np.c_[geometry['x'], geometry['y']]
                electrodes['axial_um'] = electrodes['localCoordinates'][:, 1]

            depths = electrodes['localCoordinates'][:, 1]
            xyz = np.array(self.ins['json']['xyz_picks']) / 1e6

            if self.hist_lookup[self.histology_status] >= 2:
                traj = self.one.alyx.rest('trajectories', 'list', provenance='Ephys aligned histology track',
                                          probe_insertion=self.pid)[0]
                align_key = self.ins['json']['extended_qc']['alignment_stored']
                feature = traj['json'][align_key][0]
                track = traj['json'][align_key][1]
                ephysalign = EphysAlignment(xyz, depths, track_prev=track,
                                            feature_prev=feature,
                                            brain_atlas=self.brain_atlas, speedy=True)
                electrodes['mlapdv'] = ephysalign.get_channel_locations(feature, track)
                electrodes['atlas_id'] = self.brain_atlas.regions.get(self.brain_atlas.get_labels(electrodes['mlapdv']))['id']

            if self.hist_lookup[self.histology_status] == 1:
                xyz = xyz[np.argsort(xyz[:, 2]), :]
                electrodes['mlapdv'] = interpolate_along_track(xyz, (depths + TIP_SIZE_UM) / 1e6)
                electrodes['atlas_id'] = self.brain_atlas.regions.get(self.brain_atlas.get_labels(electrodes['mlapdv']))['id']

        return electrodes
Exemplo n.º 6
0
    def plot_scaling(region, scale, mapper, ax):
        for reg, col in zip(region_scaled, scale_factor):
            height = np.abs(reg[1] - reg[0])
            color = np.array(mapper.to_rgba(col, bytes=True)) / 255
            ax.bar(x=1.1, height=height, width=0.2, color=color, bottom=reg[0], edgecolor='w')

        sec_ax = ax.secondary_yaxis('right')
        sec_ax.set_yticks(np.mean(region, axis=1))
        sec_ax.set_yticklabels(np.around(scale, 2))
        sec_ax.tick_params(axis="y", direction="in")
        sec_ax.set_ylim([20, 3840])

    fig, ax = plt.subplots(1, len(alignments) + 1, figsize=(15, 15))
    ephysalign = EphysAlignment(xyz_picks, depths, brain_atlas=brain_atlas)
    feature, track, _ = ephysalign.get_track_and_feature()
    channels_orig = ephysalign.get_channel_locations(feature, track)
    region, region_label = ephysalign.scale_histology_regions(feature, track)
    region_scaled, scale_factor = ephysalign.get_scale_factor(region)
    region_colour = ephysalign.region_colour

    norm = matplotlib.colors.Normalize(vmin=0.5, vmax=1.5, clip=True)
    mapper = matplotlib.cm.ScalarMappable(norm=norm, cmap=matplotlib.cm.seismic)

    ax_i = fig.axes[0]
    plot_regions(region, region_label, region_colour, ax_i)
    plot_scaling(region_scaled, scale_factor, mapper, ax_i)
    ax_i.set_title('Original')

    for iK, key in enumerate(alignments):
        # Location of reference lines used for alignmnet
        feature = np.array(alignments[key][0])
Exemplo n.º 7
0
class TestsEphysAlignment(unittest.TestCase):
    def setUp(self):
        self.ephysalign = EphysAlignment(xyz_picks)
        self.feature = self.ephysalign.feature_init
        self.track = self.ephysalign.track_init

    def test_no_scaling(self):
        xyz_channels = self.ephysalign.get_channel_locations(self.feature,
                                                             self.track,
                                                             depths=depths)
        coords = np.r_[[xyz_picks[-1, :]], [xyz_channels[0, :]]]
        dist_to_fist_electrode = np.around(_cumulative_distance(coords)[-1], 5)
        assert np.isclose(dist_to_fist_electrode, (TIP_SIZE_UM + 20) / 1e6)

    def test_offset(self):
        feature_val = 500 / 1e6
        track_val = 1000 / 1e6

        tracks = np.sort(np.r_[self.track[[0, -1]], track_val])
        track_new = self.ephysalign.feature2track(tracks, self.feature,
                                                  self.track)
        feature_new = np.sort(np.r_[self.feature[[0, -1]], feature_val])
        track_new = self.ephysalign.adjust_extremes_uniform(
            feature_new, track_new)

        xyz_channels = self.ephysalign.get_channel_locations(feature_new,
                                                             track_new,
                                                             depths=depths)
        coords = np.r_[[xyz_picks[-1, :]], [xyz_channels[0, :]]]
        dist_to_fist_electrode = np.around(_cumulative_distance(coords)[-1], 5)
        assert np.isclose(dist_to_fist_electrode,
                          ((TIP_SIZE_UM + 20) / 1e6 + feature_val))
        track_val = self.ephysalign.track2feature(track_val, feature_new,
                                                  track_new)
        self.assertTrue(np.all(np.isclose(track_val, feature_val)))

        region_new, _ = self.ephysalign.scale_histology_regions(
            feature_new, track_new)
        _, scale_factor = self.ephysalign.get_scale_factor(region_new)
        self.assertTrue(np.all(np.isclose(scale_factor, 1)))

    def test_uniform_scaling(self):
        feature_val = np.array([500, 700, 2000]) / 1e6
        track_val = np.array([1000, 1300, 2700]) / 1e6

        tracks = np.sort(np.r_[self.track[[0, -1]], track_val])
        track_new = self.ephysalign.feature2track(tracks, self.feature,
                                                  self.track)
        feature_new = np.sort(np.r_[self.feature[[0, -1]], feature_val])
        track_new = self.ephysalign.adjust_extremes_uniform(
            feature_new, track_new)

        region_new, _ = self.ephysalign.scale_histology_regions(
            feature_new, track_new)
        _, scale_factor = self.ephysalign.get_scale_factor(region_new)
        self.assertTrue(np.isclose(scale_factor[0], 1))
        self.assertTrue(np.isclose(scale_factor[-1], 1))

    def test_linear_scaling(self):
        feature_val = np.array([500, 700, 2000]) / 1e6
        track_val = np.array([1000, 1300, 2700]) / 1e6

        tracks = np.sort(np.r_[self.track[[0, -1]], track_val])
        track_new = self.ephysalign.feature2track(tracks, self.feature,
                                                  self.track)
        feature_new = np.sort(np.r_[self.feature[[0, -1]], feature_val])

        fit = np.polyfit(feature_new[1:-1], track_new[1:-1], 1)
        linear_fit = np.around(1 / fit[0], 3)

        feature_new, track_new = self.ephysalign.adjust_extremes_linear(
            feature_new, track_new, extend_feature=1)

        region_new, _ = self.ephysalign.scale_histology_regions(
            feature_new, track_new)
        _, scale_factor = self.ephysalign.get_scale_factor(region_new)

        self.assertTrue(np.isclose(np.around(scale_factor[0], 3), linear_fit))
        self.assertTrue(np.isclose(np.around(scale_factor[-1], 3), linear_fit))
Exemplo n.º 8
0
    def upload_channels(self, alignment_key, upload_alyx, upload_flatiron):
        """
        Upload channels to alyx and flatiron based on the alignment specified by the alignment key
        """

        feature = np.array(self.alignments[alignment_key][0])
        track = np.array(self.alignments[alignment_key][1])
        ephysalign = EphysAlignment(self.xyz_picks,
                                    self.depths,
                                    track_prev=track,
                                    feature_prev=feature,
                                    brain_atlas=self.brain_atlas)

        # Find the channels
        channels_mlapdv = np.int32(
            ephysalign.get_channel_locations(feature, track) * 1e6)
        channels_brainID = ephysalign.get_brain_locations(channels_mlapdv /
                                                          1e6)['id']

        # Find the clusters
        r = regions_from_allen_csv()
        clusters_mlapdv = channels_mlapdv[self.cluster_chns]
        clusters_brainID = channels_brainID[self.cluster_chns]
        clusters_brainAcro = r.get(ids=clusters_brainID).acronym

        # upload datasets to flatiron
        files_to_register = []
        if upload_flatiron:
            ftp_patcher = FTPPatcher(one=self.one)
            insertion = self.one.alyx.rest('insertions', 'read', id=self.eid)
            alf_path = self.one.path_from_eid(insertion['session']).joinpath(
                'alf', insertion['name'])
            alf_path.mkdir(exist_ok=True, parents=True)

            # Make the channels.mlapdv dataset
            f_name = alf_path.joinpath('channels.mlapdv.npy')
            np.save(f_name, channels_mlapdv)
            files_to_register.append(f_name)

            # Make the channels.brainLocationIds dataset
            f_name = alf_path.joinpath(
                'channels.brainLocationIds_ccf_2017.npy')
            np.save(f_name, channels_brainID)
            files_to_register.append(f_name)

            # Make the clusters.mlapdv dataset
            f_name = alf_path.joinpath('clusters.mlapdv.npy')
            np.save(f_name, clusters_mlapdv)
            files_to_register.append(f_name)

            # Make the clusters.brainLocationIds dataset
            f_name = alf_path.joinpath(
                'clusters.brainLocationIds_ccf_2017.npy')
            np.save(f_name, clusters_brainID)
            files_to_register.append(f_name)

            # Make the clusters.brainLocationAcronym dataset
            f_name = alf_path.joinpath(
                'clusters.brainLocationAcronyms_ccf_2017.npy')
            np.save(f_name, clusters_brainAcro)
            files_to_register.append(f_name)

            self.log.info("Writing datasets to FlatIron")
            ftp_patcher.create_dataset(path=files_to_register,
                                       created_by=self.one._par.ALYX_LOGIN)

        # Need to change channels stored on alyx as well as the stored key is not the same as the
        # latest key
        if upload_alyx:
            if alignment_key != self.align_keys_sorted[0]:
                histology.register_aligned_track(self.eid,
                                                 channels_mlapdv / 1e6,
                                                 chn_coords=SITES_COORDINATES,
                                                 one=self.one,
                                                 overwrite=True,
                                                 channels=self.channels)

                ephys_traj = self.one.alyx.rest(
                    'trajectories',
                    'list',
                    probe_insertion=self.eid,
                    provenance='Ephys aligned histology track')
                patch_dict = {'json': self.alignments}
                self.one.alyx.rest('trajectories',
                                   'partial_update',
                                   id=ephys_traj[0]['id'],
                                   data=patch_dict)

        return files_to_register
Exemplo n.º 9
0
    def upload_channels(self, alignment_key, upload_alyx, upload_flatiron):
        """
        Upload channels to alyx and flatiron based on the alignment specified by the alignment key
        """

        feature = np.array(self.alignments[alignment_key][0])
        track = np.array(self.alignments[alignment_key][1])

        try:
            meta_dset = self.one.list_datasets(self.insertion['session'], '*ap.meta',
                                               collection=f'raw_ephys_data/{self.insertion["name"]}')

            meta_file = self.one.load_dataset(self.insertion['session'], meta_dset[0].split('/')[-1],
                                              collection=f'raw_ephys_data/{self.insertion["name"]}',
                                              download_only=True)
            geometry = spikeglx.read_geometry(meta_file)
            chns = np.c_[geometry['x'], geometry['y']]
        except Exception as err:
            self.log.warning(f"Could not compute channel locations from meta file, errored with message: {err}. "
                             f"Will use default Neuropixel 1 channels")
            geometry = trace_header(version=1)
            chns = np.c_[geometry['x'], geometry['y']]

        ephysalign = EphysAlignment(self.xyz_picks, chns[:, 1],
                                    track_prev=track,
                                    feature_prev=feature,
                                    brain_atlas=self.brain_atlas)
        channels_mlapdv = np.int32(ephysalign.get_channel_locations(feature, track) * 1e6)
        channels_atlas_id = ephysalign.get_brain_locations(channels_mlapdv / 1e6)['id']

        # Need to change channels stored on alyx as well as the stored key is not the same as the latest key
        if upload_alyx:
            if alignment_key != self.align_keys_sorted[0]:
                histology.register_aligned_track(self.eid, channels_mlapdv / 1e6,
                                                 chn_coords=chns, one=self.one,
                                                 overwrite=True, channels=self.channels_flag,
                                                 brain_atlas=self.brain_atlas)

                ephys_traj = self.one.alyx.get(f'/trajectories?&probe_insertion={self.eid}'
                                               '&provenance=Ephys aligned histology track',
                                               clobber=True)
                patch_dict = {'json': self.alignments}
                self.one.alyx.rest('trajectories', 'partial_update', id=ephys_traj[0]['id'],
                                   data=patch_dict)

        files_to_register = []
        if upload_flatiron:
            ftp_patcher = FTPPatcher(one=self.one)

            alf_path = self.one.eid2path(self.insertion['session']).joinpath('alf', self.insertion["name"])
            alf_path.mkdir(exist_ok=True, parents=True)

            f_name = alf_path.joinpath('electrodeSites.mlapdv.npy')
            np.save(f_name, channels_mlapdv)
            files_to_register.append(f_name)

            f_name = alf_path.joinpath('electrodeSites.brainLocationIds_ccf_2017.npy')
            np.save(f_name, channels_atlas_id)
            files_to_register.append(f_name)

            f_name = alf_path.joinpath('electrodeSites.localCoordinates.npy')
            np.save(f_name, chns)
            files_to_register.append(f_name)

            probe_collections = self.one.list_collections(self.insertion['session'], filename='channels*',
                                                          collection=f'alf/{self.insertion["name"]}*')

            for collection in probe_collections:
                chns = self.one.load_dataset(self.insertion['session'], 'channels.localCoordinates', collection=collection)
                ephysalign = EphysAlignment(self.xyz_picks, chns[:, 1],
                                            track_prev=track,
                                            feature_prev=feature,
                                            brain_atlas=self.brain_atlas)
                channels_mlapdv = np.int32(ephysalign.get_channel_locations(feature, track) * 1e6)
                channels_atlas_id = ephysalign.get_brain_locations(channels_mlapdv / 1e6)['id']

                alf_path = self.one.eid2path(self.insertion['session']).joinpath(collection)
                alf_path.mkdir(exist_ok=True, parents=True)

                f_name = alf_path.joinpath('channels.mlapdv.npy')
                np.save(f_name, channels_mlapdv)
                files_to_register.append(f_name)

                f_name = alf_path.joinpath('channels.brainLocationIds_ccf_2017.npy')
                np.save(f_name, channels_atlas_id)
                files_to_register.append(f_name)

            self.log.info("Writing datasets to FlatIron")
            ftp_patcher.create_dataset(path=files_to_register,
                                       created_by=self.one.alyx.user)

        return files_to_register
Exemplo n.º 10
0
def plot_alignment(insertion, traj, ind=None):
    depths = SITES_COORDINATES[:, 1]
    xyz_picks = np.array(insertion['json']['xyz_picks']) / 1e6

    alignments = traj['json'].copy()
    k = list(alignments.keys())[-1]  # if only I had a Walrus available !
    alignments = {k: alignments[k]}
    # Create a figure and arrange using gridspec
    widths = [1, 2.5]
    heights = [1] * len(alignments)
    gs_kw = dict(width_ratios=widths, height_ratios=heights)
    fig, axis = plt.subplots(len(alignments),
                             2,
                             constrained_layout=True,
                             gridspec_kw=gs_kw,
                             figsize=(8, 9))

    # Iterate over all alignments for trajectory
    # 1. Plot brain regions that channel pass through
    # 2. Plot coronal slice along trajectory with location of channels shown as red points
    # 3. Save results for each alignment into a dict - channels
    channels = {}
    for iK, key in enumerate(alignments):

        # Location of reference lines used for alignmnet
        feature = np.array(alignments[key][0])
        track = np.array(alignments[key][1])
        chn_coords = SITES_COORDINATES
        # Instantiate EphysAlignment object
        ephysalign = EphysAlignment(xyz_picks,
                                    depths,
                                    track_prev=track,
                                    feature_prev=feature)

        # Find xyz location of all channels
        xyz_channels = ephysalign.get_channel_locations(feature, track)
        # Find brain region that each channel is located in
        brain_regions = ephysalign.get_brain_locations(xyz_channels)
        # Add extra keys to store all useful information as one bunch object
        brain_regions['xyz'] = xyz_channels
        brain_regions['lateral'] = chn_coords[:, 0]
        brain_regions['axial'] = chn_coords[:, 1]

        # Store brain regions result in channels dict with same key as in alignment
        channel_info = {key: brain_regions}
        channels.update(channel_info)

        # For plotting -> extract the boundaries of the brain regions, as well as CCF label and colour
        region, region_label, region_colour, _ = ephysalign.get_histology_regions(
            xyz_channels, depths)

        # Make plot that shows the brain regions that channels pass through
        ax_regions = fig.axes[iK * 2]
        for reg, col in zip(region, region_colour):
            height = np.abs(reg[1] - reg[0])
            bottom = reg[0]
            color = col / 255
            ax_regions.bar(x=0.5,
                           height=height,
                           width=1,
                           color=color,
                           bottom=reg[0],
                           edgecolor='w')
        ax_regions.set_yticks(region_label[:, 0].astype(int))
        ax_regions.yaxis.set_tick_params(labelsize=8)
        ax_regions.get_xaxis().set_visible(False)
        ax_regions.set_yticklabels(region_label[:, 1])
        ax_regions.spines['right'].set_visible(False)
        ax_regions.spines['top'].set_visible(False)
        ax_regions.spines['bottom'].set_visible(False)
        ax_regions.hlines([0, 3840],
                          *ax_regions.get_xlim(),
                          linestyles='dashed',
                          linewidth=3,
                          colors='k')
        # ax_regions.plot(np.ones(channel_depths_track.shape), channel_depths_track, '*r')

        # Make plot that shows coronal slice that trajectory passes through with location of channels
        # shown in red
        ax_slice = fig.axes[iK * 2 + 1]
        brain_atlas.plot_tilted_slice(xyz_channels, axis=1, ax=ax_slice)
        ax_slice.plot(xyz_channels[:, 0] * 1e6, xyz_channels[:, 2] * 1e6, 'r*')
        ax_slice.title.set_text(insertion['id'] + '\n' + str(key))

    # Make sure the plot displays
    plt.show()
Exemplo n.º 11
0
class TestsAlignmentQcGUI(unittest.TestCase):
    @classmethod
    def setUpClass(cls) -> None:
        probe = ['probe00', 'probe01']
        create_alyx_probe_insertions(session_path=EPHYS_SESSION,
                                     model='3B2',
                                     labels=probe,
                                     one=one,
                                     force=True)
        cls.probe_id = one.alyx.rest('insertions',
                                     'list',
                                     session=EPHYS_SESSION,
                                     name='probe00')[0]['id']
        cls.probe_id2 = one.alyx.rest('insertions',
                                      'list',
                                      session=EPHYS_SESSION,
                                      name='probe01')[0]['id']
        data = np.load(Path(
            Path(__file__).parent.joinpath('fixtures',
                                           'data_alignmentqc_gui.npz')),
                       allow_pickle=True)
        cls.xyz_picks = data['xyz_picks']
        cls.alignments = data['alignments'].tolist()
        cls.cluster_chns = data['cluster_chns']
        register_track(cls.probe_id,
                       picks=cls.xyz_picks,
                       one=one,
                       overwrite=True,
                       channels=False)
        register_track(cls.probe_id2,
                       picks=cls.xyz_picks,
                       one=one,
                       overwrite=True,
                       channels=False)

    def setUp(self) -> None:
        self.resolved_key = '2020-09-14T15:44:56_nate'
        self.ld = LoadData(one=one,
                           brain_atlas=brain_atlas,
                           testing=True,
                           probe_id=self.probe_id)
        _ = self.ld.get_xyzpicks()
        self.ld.cluster_chns = self.cluster_chns
        _ = self.ld.get_previous_alignments()
        _ = self.ld.get_starting_alignment(0)
        self.ephysalign = EphysAlignment(self.ld.xyz_picks,
                                         self.ld.chn_depths,
                                         brain_atlas=self.ld.brain_atlas)
        traj = one.alyx.rest('trajectories',
                             'list',
                             probe_id=self.probe_id,
                             provenance='Ephys aligned histology track')
        if traj:
            self.prev_traj_id = traj[0]['id']

    def test_alignments(self):
        checks = getmembers(
            TestsAlignmentQcGUI,
            lambda x: isfunction(x) and re.match(r'^_\d{2}_.*', x.__name__))
        # Run each function in order
        for name, fn in sorted(checks, key=lambda x: x[0]):
            if not name.startswith('_01_'):
                self.setUp()
            fn(self)

    def _01_no_alignment(self):

        prev_align = self.ld.get_previous_alignments()
        assert (len(prev_align) == 1)
        assert (prev_align[0] == 'original')
        feature, track = self.ld.get_starting_alignment(0)
        assert (not feature)
        assert (not track)
        assert (not self.ld.alignments)
        assert (self.ld.resolved == 0)

    def _02_one_alignment(self):
        key = '2020-07-26T17:06:58_alejandro'
        feature = self.alignments[key][0]
        track = self.alignments[key][1]
        xyz_channels = self.ephysalign.get_channel_locations(feature, track)
        self.ld.upload_data(xyz_channels, channels=False)
        self.ld.update_alignments(np.array(feature),
                                  np.array(track),
                                  key_info=key)
        _ = self.ld.get_previous_alignments()
        _ = self.ld.get_starting_alignment(0)
        assert (self.ld.current_align == key)

        traj = one.alyx.rest('trajectories',
                             'list',
                             probe_id=self.probe_id,
                             provenance='Ephys aligned histology track')
        assert (sorted(list(traj[0]['json'].keys()), reverse=True)[0] == key)
        assert (len(traj[0]['json']) == 1)
        # Not added user evaluation so should just contain feature and track lists
        assert (len(traj[0]['json'][key]) == 2)

        self.ld.update_qc(upload_flatiron=False)
        insertion = one.alyx.rest('insertions', 'read', id=self.probe_id)
        assert (insertion['json']['extended_qc']['alignment_count'] == 1)
        assert (insertion['json']['extended_qc']['alignment_stored'] == key)
        assert (not insertion['json']['extended_qc'].get('experimenter', None))
        assert (insertion['json']['qc'] == 'NOT_SET')
        assert (self.ld.resolved == 0)

    def _03_same_user(self):
        key = '2020-08-26T17:06:58_alejandro'
        eval_str = 'PASS: Noise and artifact'
        feature = self.alignments[key][0]
        track = self.alignments[key][1]
        xyz_channels = self.ephysalign.get_channel_locations(feature, track)
        self.ld.upload_data(xyz_channels, channels=False)
        self.ld.update_alignments(np.array(feature),
                                  np.array(track),
                                  key_info=key,
                                  user_eval=eval_str)
        _ = self.ld.get_previous_alignments()
        _ = self.ld.get_starting_alignment(0)
        assert (self.ld.current_align == key)

        traj = one.alyx.rest('trajectories',
                             'list',
                             probe_id=self.probe_id,
                             provenance='Ephys aligned histology track')
        traj_id = traj[0]['id']
        assert (sorted(list(traj[0]['json'].keys()), reverse=True)[0] == key)
        assert (len(traj[0]['json']) == 1)
        assert (len(traj[0]['json'][key]) == 3)
        assert (traj_id != self.prev_traj_id)

        self.ld.update_qc(upload_flatiron=False)
        insertion = one.alyx.rest('insertions', 'read', id=self.probe_id)
        assert (insertion['json']['extended_qc']['alignment_count'] == 1)
        assert (insertion['json']['extended_qc']['alignment_stored'] == key)
        assert (insertion['json']['extended_qc']['alignment_resolved'] == 0)
        assert (insertion['json']['extended_qc']['experimenter'] == 'PASS')
        assert (insertion['json']['qc'] == 'PASS')
        assert (self.ld.resolved == 0)

    def _04_two_alignments(self):
        key = '2020-09-14T15:42:22_guido'
        feature = self.alignments[key][0]
        track = self.alignments[key][1]
        xyz_channels = self.ephysalign.get_channel_locations(feature, track)
        self.ld.upload_data(xyz_channels, channels=False)
        self.ld.update_alignments(np.array(feature),
                                  np.array(track),
                                  key_info=key)
        _ = self.ld.get_previous_alignments()
        _ = self.ld.get_starting_alignment(0)

        assert (self.ld.current_align == key)

        traj = one.alyx.rest('trajectories',
                             'list',
                             probe_id=self.probe_id,
                             provenance='Ephys aligned histology track')
        traj_id = traj[0]['id']
        assert (sorted(list(traj[0]['json'].keys()), reverse=True)[0] == key)
        assert (len(traj[0]['json']) == 2)
        assert (len(traj[0]['json'][key]) == 2)
        assert (traj_id != self.prev_traj_id)
        # Also assert all the keys match

        self.ld.update_qc(upload_flatiron=False)
        insertion = one.alyx.rest('insertions', 'read', id=self.probe_id)
        assert (insertion['json']['qc'] == 'PASS')
        assert (insertion['json']['extended_qc']['experimenter'] == 'PASS')
        assert (insertion['json']['extended_qc']['alignment_count'] == 2)
        assert (insertion['json']['extended_qc']['alignment_stored'] == key)
        assert (insertion['json']['extended_qc']['alignment_resolved'] == 0)
        assert (insertion['json']['extended_qc']['alignment_qc'] < 0.8)
        assert (self.ld.resolved == 0)

    def _05_three_alignments(self):

        key = '2020-09-14T15:44:56_nate'
        eval_str = 'WARNING: Drift'
        feature = self.alignments[key][0]
        track = self.alignments[key][1]
        xyz_channels = self.ephysalign.get_channel_locations(feature, track)
        self.ld.upload_data(xyz_channels, channels=False)
        self.ld.update_alignments(np.array(feature),
                                  np.array(track),
                                  key_info=key,
                                  user_eval=eval_str)
        _ = self.ld.get_previous_alignments()
        _ = self.ld.get_starting_alignment(0)

        assert (self.ld.current_align == key)

        traj = one.alyx.rest('trajectories',
                             'list',
                             probe_id=self.probe_id,
                             provenance='Ephys aligned histology track')
        traj_id = traj[0]['id']
        assert (len(traj[0]['json']) == 3)
        assert (sorted(list(traj[0]['json'].keys()), reverse=True)[0] == key)
        assert (len(traj[0]['json'][key]) == 3)
        assert (traj_id != self.prev_traj_id)

        self.ld.update_qc(upload_flatiron=False)
        insertion = one.alyx.rest('insertions', 'read', id=self.probe_id)
        assert (insertion['json']['qc'] == 'WARNING')
        assert (insertion['json']['extended_qc']['experimenter'] == 'WARNING')
        assert (insertion['json']['extended_qc']['alignment_count'] == 3)
        assert (insertion['json']['extended_qc']['alignment_stored'] == key)
        assert (insertion['json']['extended_qc']['alignment_resolved'] == 1)
        assert (
            insertion['json']['extended_qc']['alignment_resolved_by'] == 'qc')
        assert (insertion['json']['extended_qc']['alignment_qc'] > 0.8)
        assert (self.ld.resolved == 1)

    def _06_new_user_after_resolved(self):
        key = '2020-09-16T15:44:56_mayo'
        eval_str = 'PASS: Drift'
        feature = self.alignments[key][0]
        track = self.alignments[key][1]
        xyz_channels = self.ephysalign.get_channel_locations(feature, track)
        self.ld.upload_data(xyz_channels, channels=False)
        self.ld.update_alignments(np.array(feature),
                                  np.array(track),
                                  key_info=key,
                                  user_eval=eval_str)
        _ = self.ld.get_previous_alignments()
        _ = self.ld.get_starting_alignment(0)

        assert (self.ld.current_align == key)

        traj = one.alyx.rest('trajectories',
                             'list',
                             probe_id=self.probe_id,
                             provenance='Ephys aligned histology track')
        traj_id = traj[0]['id']
        assert (len(traj[0]['json']) == 4)
        assert (sorted(list(traj[0]['json'].keys()), reverse=True)[0] == key)
        assert (traj_id == self.prev_traj_id)

        self.ld.update_qc(upload_flatiron=False)
        insertion = one.alyx.rest('insertions', 'read', id=self.probe_id)
        assert (insertion['json']['qc'] == 'WARNING')
        assert (insertion['json']['extended_qc']['experimenter'] == 'WARNING')
        assert (insertion['json']['extended_qc']['alignment_count'] == 4)
        assert (insertion['json']['extended_qc']['alignment_stored'] ==
                self.resolved_key)
        assert (insertion['json']['extended_qc']['alignment_resolved'] == 1)
        assert (
            insertion['json']['extended_qc']['alignment_resolved_by'] == 'qc')
        assert (insertion['json']['extended_qc']['alignment_qc'] > 0.8)
        assert (self.ld.resolved == 1)

    def _07_same_user_after_resolved(self):
        key = '2020-10-14T15:44:56_nate'
        eval_str = 'CRITICAL: Brain Damage'
        feature = self.alignments[key][0]
        track = self.alignments[key][1]
        xyz_channels = self.ephysalign.get_channel_locations(feature, track)
        self.ld.upload_data(xyz_channels, channels=False)
        self.ld.update_alignments(np.array(feature),
                                  np.array(track),
                                  key_info=key,
                                  user_eval=eval_str)
        _ = self.ld.get_previous_alignments()
        _ = self.ld.get_starting_alignment(0)

        assert (self.ld.current_align == key)

        traj = one.alyx.rest('trajectories',
                             'list',
                             probe_id=self.probe_id,
                             provenance='Ephys aligned histology track')
        traj_id = traj[0]['id']
        assert (sorted(list(traj[0]['json'].keys()), reverse=True)[0] == key)
        assert (len(traj[0]['json']) == 5)
        assert (traj_id == self.prev_traj_id)

        self.ld.update_qc(upload_flatiron=False)
        insertion = one.alyx.rest('insertions', 'read', id=self.probe_id)
        assert (insertion['json']['qc'] == 'CRITICAL')
        assert (insertion['json']['extended_qc']['experimenter'] == 'CRITICAL')
        assert (insertion['json']['extended_qc']['alignment_count'] == 5)
        assert (insertion['json']['extended_qc']['alignment_stored'] ==
                self.resolved_key)
        assert (insertion['json']['extended_qc']['alignment_resolved'] == 1)
        assert (
            insertion['json']['extended_qc']['alignment_resolved_by'] == 'qc')
        assert (insertion['json']['extended_qc']['alignment_qc'] > 0.8)
        assert (self.ld.resolved == 1)

    def _08_starting_alignments(self):
        key = '2020-10-14T15:44:56_nate'
        # Starting from original
        self.ld.probe_id = self.probe_id2
        prev_align = self.ld.get_previous_alignments()
        assert (len(prev_align) == 1)
        assert (prev_align[0] == 'original')
        assert (self.ld.alignments == {})

        # Loading in one with alignments
        self.ld.probe_id = self.probe_id
        prev_align = self.ld.get_previous_alignments()
        assert (len(prev_align) == 6)
        assert (prev_align[-1] == 'original')
        assert (len(self.ld.alignments) == 5)
        assert (sorted(self.ld.alignments, reverse=True)[0] == key)

        # Now loading back one with nothing
        self.ld.probe_id = self.probe_id2
        prev_align = self.ld.get_previous_alignments()
        assert (len(prev_align) == 1)
        assert (prev_align[0] == 'original')
        assert (self.ld.alignments == {})

    @classmethod
    def tearDownClass(cls) -> None:
        one.alyx.rest('insertions', 'delete', id=cls.probe_id)
        one.alyx.rest('insertions', 'delete', id=cls.probe_id2)
Exemplo n.º 12
0
class TestsAlignmentQcGUI(unittest.TestCase):
    @classmethod
    def setUpClass(cls) -> None:
        probe = ['probe00']
        create_alyx_probe_insertions(session_path=EPHYS_SESSION,
                                     model='3B2',
                                     labels=probe,
                                     one=one,
                                     force=True)
        cls.probe_id = one.alyx.rest('insertions',
                                     'list',
                                     session=EPHYS_SESSION,
                                     name='probe00')[0]['id']
        data = np.load(Path(
            Path(__file__).parent.joinpath('fixtures',
                                           'data_alignmentqc_gui.npz')),
                       allow_pickle=True)
        cls.xyz_picks = data['xyz_picks']
        cls.alignments = data['alignments'].tolist()
        cls.cluster_chns = data['cluster_chns']
        register_track(cls.probe_id,
                       picks=cls.xyz_picks,
                       one=one,
                       overwrite=True,
                       channels=False)

    def setUp(self) -> None:
        self.resolved_key = '2020-09-14T15:44:56_nate'
        self.ld = LoadData(one=one,
                           brain_atlas=brain_atlas,
                           testing=True,
                           probe_id=self.probe_id)
        _ = self.ld.get_xyzpicks()
        self.ld.cluster_chns = self.cluster_chns
        _ = self.ld.get_previous_alignments()
        _ = self.ld.get_starting_alignment(0)
        self.ephysalign = EphysAlignment(self.ld.xyz_picks,
                                         self.ld.chn_depths,
                                         brain_atlas=self.ld.brain_atlas)
        traj = one.alyx.rest('trajectories',
                             'list',
                             probe_id=self.probe_id,
                             provenance='Ephys aligned histology track')
        if traj:
            self.prev_traj_id = traj[0]['id']

    def test_01_no_alignment(self):

        prev_align = self.ld.get_previous_alignments()
        assert (len(prev_align) == 1)
        assert (prev_align[0] == 'original')
        feature, track = self.ld.get_starting_alignment(0)
        assert (not feature)
        assert (not track)
        assert (not self.ld.alignments)
        assert (self.ld.resolved == 0)

    def test_02_one_alignment(self):
        key = '2020-07-26T17:06:58_alejandro'
        feature = self.alignments[key][0]
        track = self.alignments[key][1]
        xyz_channels = self.ephysalign.get_channel_locations(feature, track)
        self.ld.upload_data(xyz_channels, channels=False)
        self.ld.update_alignments(np.array(feature),
                                  np.array(track),
                                  key_info=key)
        _ = self.ld.get_previous_alignments()
        _ = self.ld.get_starting_alignment(0)
        assert (self.ld.current_align == key)

        traj = one.alyx.rest('trajectories',
                             'list',
                             probe_id=self.probe_id,
                             provenance='Ephys aligned histology track')
        assert (sorted(list(traj[0]['json'].keys()), reverse=True)[0] == key)
        assert (len(traj[0]['json']) == 1)

        self.ld.update_qc(upload_flatiron=False)
        insertion = one.alyx.rest('insertions', 'read', id=self.probe_id)
        assert (insertion['json']['extended_qc']['alignment_count'] == 1)
        assert (insertion['json']['extended_qc']['alignment_stored'] == key)
        assert (insertion['json']['qc'] == 'NOT_SET')
        assert (self.ld.resolved == 0)

    def test_03_same_user(self):
        key = '2020-08-26T17:06:58_alejandro'
        feature = self.alignments[key][0]
        track = self.alignments[key][1]
        xyz_channels = self.ephysalign.get_channel_locations(feature, track)
        self.ld.upload_data(xyz_channels, channels=False)
        self.ld.update_alignments(np.array(feature),
                                  np.array(track),
                                  key_info=key)
        _ = self.ld.get_previous_alignments()
        _ = self.ld.get_starting_alignment(0)
        assert (self.ld.current_align == key)

        traj = one.alyx.rest('trajectories',
                             'list',
                             probe_id=self.probe_id,
                             provenance='Ephys aligned histology track')
        traj_id = traj[0]['id']
        assert (sorted(list(traj[0]['json'].keys()), reverse=True)[0] == key)
        assert (len(traj[0]['json']) == 1)
        assert (traj_id != self.prev_traj_id)

        self.ld.update_qc(upload_flatiron=False)
        insertion = one.alyx.rest('insertions', 'read', id=self.probe_id)
        assert (insertion['json']['extended_qc']['alignment_count'] == 1)
        assert (insertion['json']['extended_qc']['alignment_stored'] == key)
        assert (insertion['json']['extended_qc']['alignment_resolved'] == 0)
        assert (insertion['json']['qc'] == 'NOT_SET')
        assert (self.ld.resolved == 0)

    def test_04_two_alignments(self):
        key = '2020-09-14T15:42:22_guido'
        feature = self.alignments[key][0]
        track = self.alignments[key][1]
        xyz_channels = self.ephysalign.get_channel_locations(feature, track)
        self.ld.upload_data(xyz_channels, channels=False)
        self.ld.update_alignments(np.array(feature),
                                  np.array(track),
                                  key_info=key)
        _ = self.ld.get_previous_alignments()
        _ = self.ld.get_starting_alignment(0)

        assert (self.ld.current_align == key)

        traj = one.alyx.rest('trajectories',
                             'list',
                             probe_id=self.probe_id,
                             provenance='Ephys aligned histology track')
        traj_id = traj[0]['id']
        assert (sorted(list(traj[0]['json'].keys()), reverse=True)[0] == key)
        assert (len(traj[0]['json']) == 2)
        assert (traj_id != self.prev_traj_id)
        # Also assert all the keys match

        self.ld.update_qc(upload_flatiron=False)
        insertion = one.alyx.rest('insertions', 'read', id=self.probe_id)
        assert (insertion['json']['qc'] == 'NOT_SET')
        assert (insertion['json']['extended_qc']['alignment_count'] == 2)
        assert (insertion['json']['extended_qc']['alignment_stored'] == key)
        assert (insertion['json']['extended_qc']['alignment_resolved'] == 0)
        assert (insertion['json']['extended_qc']['alignment_qc'] < 0.8)
        assert (self.ld.resolved == 0)

    def test_05_three_alignments(self):

        key = '2020-09-14T15:44:56_nate'
        feature = self.alignments[key][0]
        track = self.alignments[key][1]
        xyz_channels = self.ephysalign.get_channel_locations(feature, track)
        self.ld.upload_data(xyz_channels, channels=False)
        self.ld.update_alignments(np.array(feature),
                                  np.array(track),
                                  key_info=key)
        _ = self.ld.get_previous_alignments()
        _ = self.ld.get_starting_alignment(0)

        assert (self.ld.current_align == key)

        traj = one.alyx.rest('trajectories',
                             'list',
                             probe_id=self.probe_id,
                             provenance='Ephys aligned histology track')
        traj_id = traj[0]['id']
        assert (len(traj[0]['json']) == 3)
        assert (sorted(list(traj[0]['json'].keys()), reverse=True)[0] == key)
        assert (traj_id != self.prev_traj_id)

        self.ld.update_qc(upload_flatiron=False)
        insertion = one.alyx.rest('insertions', 'read', id=self.probe_id)
        assert (insertion['json']['qc'] == 'NOT_SET')
        assert (insertion['json']['extended_qc']['alignment_count'] == 3)
        assert (insertion['json']['extended_qc']['alignment_stored'] == key)
        assert (insertion['json']['extended_qc']['alignment_resolved'] == 1)
        assert (
            insertion['json']['extended_qc']['alignment_resolved_by'] == 'qc')
        assert (insertion['json']['extended_qc']['alignment_qc'] > 0.8)
        assert (self.ld.resolved == 1)

    def test_06_new_user_after_resolved(self):
        key = '2020-09-16T15:44:56_mayo'
        feature = self.alignments[key][0]
        track = self.alignments[key][1]
        xyz_channels = self.ephysalign.get_channel_locations(feature, track)
        self.ld.upload_data(xyz_channels, channels=False)
        self.ld.update_alignments(np.array(feature),
                                  np.array(track),
                                  key_info=key)
        _ = self.ld.get_previous_alignments()
        _ = self.ld.get_starting_alignment(0)

        assert (self.ld.current_align == key)

        traj = one.alyx.rest('trajectories',
                             'list',
                             probe_id=self.probe_id,
                             provenance='Ephys aligned histology track')
        traj_id = traj[0]['id']
        assert (len(traj[0]['json']) == 4)
        assert (sorted(list(traj[0]['json'].keys()), reverse=True)[0] == key)
        assert (traj_id == self.prev_traj_id)

        self.ld.update_qc(upload_flatiron=False)
        insertion = one.alyx.rest('insertions', 'read', id=self.probe_id)
        assert (insertion['json']['qc'] == 'NOT_SET')
        assert (insertion['json']['extended_qc']['alignment_count'] == 4)
        assert (insertion['json']['extended_qc']['alignment_stored'] ==
                self.resolved_key)
        assert (insertion['json']['extended_qc']['alignment_resolved'] == 1)
        assert (
            insertion['json']['extended_qc']['alignment_resolved_by'] == 'qc')
        assert (insertion['json']['extended_qc']['alignment_qc'] > 0.8)
        assert (self.ld.resolved == 1)

    def test_07_same_user_after_resolved(self):
        key = '2020-10-14T15:44:56_nate'
        feature = self.alignments[key][0]
        track = self.alignments[key][1]
        xyz_channels = self.ephysalign.get_channel_locations(feature, track)
        self.ld.upload_data(xyz_channels, channels=False)
        self.ld.update_alignments(np.array(feature),
                                  np.array(track),
                                  key_info=key)
        _ = self.ld.get_previous_alignments()
        _ = self.ld.get_starting_alignment(0)

        assert (self.ld.current_align == key)

        traj = one.alyx.rest('trajectories',
                             'list',
                             probe_id=self.probe_id,
                             provenance='Ephys aligned histology track')
        traj_id = traj[0]['id']
        assert (sorted(list(traj[0]['json'].keys()), reverse=True)[0] == key)
        assert (len(traj[0]['json']) == 5)
        assert (traj_id == self.prev_traj_id)

        self.ld.update_qc(upload_flatiron=False)
        insertion = one.alyx.rest('insertions', 'read', id=self.probe_id)
        assert (insertion['json']['qc'] == 'NOT_SET')
        assert (insertion['json']['extended_qc']['alignment_count'] == 5)
        assert (insertion['json']['extended_qc']['alignment_stored'] ==
                self.resolved_key)
        assert (insertion['json']['extended_qc']['alignment_resolved'] == 1)
        assert (
            insertion['json']['extended_qc']['alignment_resolved_by'] == 'qc')
        assert (insertion['json']['extended_qc']['alignment_qc'] > 0.8)
        assert (self.ld.resolved == 1)

    @classmethod
    def tearDownClass(cls) -> None:
        one.alyx.rest('insertions', 'delete', id=cls.probe_id)