def test_entropy_one_column(self, idadf):
     if len(idadf.columns) >= 1:
         result = entropy(idadf, target = idadf.columns[0])
         assert(isinstance(result, float))
 def test_entropy_default(self, idadf):
     if len(idadf.columns) > 1:
         result = entropy(idadf)
         assert(isinstance(result, pandas.core.series.Series))
         assert(len(result.index) == len(idadf.columns))
 def test_entropy_multiple_columns(self, idadf):
     if len(idadf.columns) > 1:
         result = entropy(idadf, target = [idadf.columns[0],idadf.columns[1]])
         assert(isinstance(result, float))
Exemplo n.º 4
0
def su(idadf, target=None, features=None, ignore_indexer=True):
    """
    Compute the symmetric uncertainty coefficients between a set of features
    and a set of target in an IdaDataFrame. 
    
    Parameters
    ----------
    idadf : IdaDataFrame
    
    target : str or list of str, optional
        A column or list of columns against to be used as target. Per default, 
        consider all columns
    
    features : str or list of str, optional
        A column or list of columns to be used as features. Per default, 
        consider all columns. 
    
    ignore_indexer : bool, default: True
        Per default, ignore the column declared as indexer in idadf
        
    Returns
    -------
    Pandas.DataFrame or Pandas.Series if only one target
    
    Notes
    -----
    Input columns as target and features should be categorical, otherwise 
    this measure does not make much sense. 
    
    Examples
    --------
    >>> idadf = IdaDataFrame(idadb, "IRIS")
    >>> su(idadf)
    """
    # Check input
    target, features = _check_input(idadf, target, features, ignore_indexer)

    entropy_dict = dict()
    length = len(idadf)
    corrector = np.log(length) * length
    values = OrderedDict()

    for t in target:
        if t not in values:
            values[t] = OrderedDict()
        features_notarget = [x for x in features if (x != t)]

        for feature in features_notarget:
            if feature not in values:
                values[feature] = OrderedDict()
            if t not in values[feature]:
                if t not in entropy_dict:
                    entropy_dict[t] = entropy(idadf, t, mode="raw")
                if feature not in entropy_dict:
                    entropy_dict[feature] = entropy(idadf, feature, mode="raw")
                join_entropy = entropy(idadf, [t] + [feature], mode="raw")
                disjoin_entropy = entropy_dict[t] + entropy_dict[feature]
                value = (2.0 * (disjoin_entropy - join_entropy + corrector) /
                         (disjoin_entropy + corrector * 2))
                values[t][feature] = value
                if feature in target:
                    values[feature][t] = value

    result = pd.DataFrame(values).fillna(np.nan)
    result = result.dropna(axis=1, how="all")

    if len(result.columns) > 1:
        order = [x for x in result.columns if x in features
                 ] + [x for x in features if x not in result.columns]
        result = result.reindex(order)

    if len(result.columns) == 1:
        if len(result) == 1:
            result = result.iloc[0, 0]
        else:
            result = result[result.columns[0]].copy()
            result.sort(ascending=True)
    else:
        result = result.fillna(1)

    return result
def su(idadf, target = None, features = None, ignore_indexer=True):
    """
    Compute the symmetric uncertainty coefficients between a set of features
    and a set of target in an IdaDataFrame. 
    
    Parameters
    ----------
    idadf : IdaDataFrame
    
    target : str or list of str, optional
        A column or list of columns against to be used as target. Per default, 
        consider all columns
    
    features : str or list of str, optional
        A column or list of columns to be used as features. Per default, 
        consider all columns. 
    
    ignore_indexer : bool, default: True
        Per default, ignore the column declared as indexer in idadf
        
    Returns
    -------
    Pandas.DataFrame or Pandas.Series if only one target
    
    Notes
    -----
    Input columns as target and features should be categorical, otherwise 
    this measure does not make much sense. 
    
    Examples
    --------
    >>> idadf = IdaDataFrame(idadb, "IRIS")
    >>> su(idadf)
    """
    # Check input
    target, features = _check_input(idadf, target, features, ignore_indexer)
                
    entropy_dict = dict()
    length = len(idadf)
    corrector = np.log(length)*length
    values = OrderedDict()
        
    for t in target:
        if t not in values:
            values[t] = OrderedDict() 
        features_notarget = [x for x in features if (x != t)]
        
        for feature in features_notarget:
            if feature not in values:
                values[feature] = OrderedDict()
            if t not in values[feature]:
                if t not in entropy_dict:
                    entropy_dict[t] = entropy(idadf, t, mode = "raw")
                if feature not in entropy_dict:
                    entropy_dict[feature] = entropy(idadf, feature, mode = "raw")
                join_entropy = entropy(idadf, [t] + [feature], mode = "raw")     
                disjoin_entropy = entropy_dict[t] + entropy_dict[feature]
                value = (2.0*(disjoin_entropy - join_entropy + corrector)/(disjoin_entropy + corrector*2))
                values[t][feature] = value
                if feature in target:
                    values[feature][t] = value
    
    result = pd.DataFrame(values).fillna(np.nan)
    result = result.dropna(axis=1, how="all")
        
    if len(result.columns) > 1:
        order = [x for x in result.columns if x in features] + [x for x in features if x not in result.columns]
        result = result.reindex(order)
    
    if len(result.columns) == 1:
        if len(result) == 1:
            result = result.iloc[0,0]
        else:
            result = result[result.columns[0]].copy()
            result.sort(ascending = True) 
    else:
        result = result.fillna(1)
   
    return result
Exemplo n.º 6
0
 def test_entropy_one_column(self, idadf):
     if len(idadf.columns) >= 1:
         result = entropy(idadf, target=idadf.columns[0])
         assert (isinstance(result, float))
Exemplo n.º 7
0
 def test_entropy_multiple_columns(self, idadf):
     if len(idadf.columns) > 1:
         result = entropy(idadf,
                          target=[idadf.columns[0], idadf.columns[1]])
         assert (isinstance(result, float))
Exemplo n.º 8
0
 def test_entropy_default(self, idadf):
     if len(idadf.columns) > 1:
         result = entropy(idadf)
         assert (isinstance(result, pandas.core.series.Series))
         assert (len(result.index) == len(idadf.columns))