Exemplo n.º 1
0
def test_bar2():
    '''Clamped bar composed of two linked bars loaded at the right end
    [00]-[01]-[02]-[03]-[04]-[05]-[06]-[07]-[08]-[09]-[10]
    [11]-[12]-[13]-[14]-[15]-[16]-[17]-[18]-[19]-[20]-[21]
    u[0] = 0, u[5] = u[16], R[-1] = R[21] = 10
    '''
    fets_eval = FETS1D2L(mats_eval=MATS1DElastic(E=10., A=1.))

    # Discretization
    fe_domain1 = FEGrid(coord_max=(10., 0., 0.),
                        shape=(10, ),
                        n_nodal_dofs=1,
                        dof_r=fets_eval.dof_r,
                        geo_r=fets_eval.geo_r)

    fe_domain2 = FEGrid(coord_min=(10., 0., 0.),
                        coord_max=(20., 0., 0.),
                        shape=(10, ),
                        n_nodal_dofs=1,
                        dof_r=fets_eval.dof_r,
                        geo_r=fets_eval.geo_r)

    ts = TS(iterms=[(fets_eval, fe_domain1), (fets_eval, fe_domain2)],
            dof_resultants=True,
            bcond_list=[
                BCDof(var='u', dof=0, value=0.),
                BCDof(var='u',
                      dof=5,
                      link_dofs=[16],
                      link_coeffs=[1.],
                      value=0.),
                BCDof(var='f', dof=21, value=10)
            ],
            rtrace_list=[
                RTraceGraph(name='Fi,right over u_right (iteration)',
                            var_y='F_int',
                            idx_y=0,
                            var_x='U_k',
                            idx_x=1),
            ])

    # Add the time-loop control
    tloop = TLoop(tstepper=ts, tline=TLine(min=0.0, step=1, max=1.0))
    u = tloop.eval()
    print 'u', u
    #
    # '---------------------------------------------------------------'
    # 'Clamped bar composed of two linked bars control displ at right'
    # 'u[0] = 0, u[5] = u[16], u[21] = 1'
    # Remove the load and put a unit displacement at the right end
    # Note, the load is irrelevant in this case and will be rewritten
    #
    ts.bcond_list = [
        BCDof(var='u', dof=0, value=0.),
        BCDof(var='u', dof=5, link_dofs=[16], link_coeffs=[1.], value=0.),
        BCDof(var='u', dof=21, value=1.)
    ]
    # system solver
    u = tloop.eval()
    print 'u', u
Exemplo n.º 2
0
    def _get_fe_domain_structure(self):
        '''Root of the domain hierarchy
        '''
        elem_length = self.length / float(self.shape)

        fe_domain = FEDomain()

        fe_m_level = FERefinementGrid(name='matrix domain',
                                      domain=fe_domain,
                                      fets_eval=self.fets_m)

        fe_grid_m = FEGrid(name='matrix grid',
                           coord_max=(self.length, ),
                           shape=(self.shape, ),
                           level=fe_m_level,
                           fets_eval=self.fets_m,
                           geo_transform=self.geo_transform)

        fe_fb_level = FERefinementGrid(name='fiber bond domain',
                                       domain=fe_domain,
                                       fets_eval=self.fets_fb)

        fe_grid_fb = FEGrid(coord_min=(0., length / 5.),
                            coord_max=(length, 0.),
                            shape=(self.shape, 1),
                            level=fe_fb_level,
                            fets_eval=self.fets_fb,
                            geo_transform=self.geo_transform)

        return fe_domain, fe_grid_m, fe_grid_fb, fe_m_level, fe_fb_level
Exemplo n.º 3
0
 def _get_fe_disk_grid(self):
     fe_grid = FEGrid(coord_min=(-1, -1),
                      coord_max=(1, 1),
                      geo_transform=self.geo_disk,
                      shape=(self.n_elems, self.n_elems),
                      fets_eval=self.fets_disk)
     return fe_grid
Exemplo n.º 4
0
 def _get_fe_grid_roof(self):
     return FEGrid(coord_min=(0.0, 0.0, 0.0),
                   coord_max=(1.0, 1.0, 1.0),
                   geo_transform=self.hp_shell,
                   shift_array=self.shift_array,
                   shape=(self.n_elems_xy, self.n_elems_xy, self.n_elems_z),
                   fets_eval=self.fe_roof)
Exemplo n.º 5
0
 def _get_fe_grid_column(self):
     return FEGrid(coord_min=(0.0, 0.0, 0.0),
                   coord_max=(1.0, 1.0, 1.0),
                   geo_transform=self.column,
                   shape=(self.n_elems_col_xy, self.n_elems_col_xy,
                          self.n_elems_col_z),
                   fets_eval=self.fe_column)
Exemplo n.º 6
0
def example_with_new_domain():
    from ibvpy.api import \
        TStepper as TS, RTDofGraph, RTraceDomainListField, TLoop, \
        TLine, BCDof, IBVPSolve as IS, DOTSEval
    from ibvpy.mats.mats1D.mats1D_elastic.mats1D_elastic import MATS1DElastic

    fets_eval = FETS1D2L3U(mats_eval=MATS1DElastic(E=10.))

    from ibvpy.mesh.fe_grid import FEGrid

    # Discretization
    domain = FEGrid(coord_max=(3., ),
                    shape=(3, ),
                    fets_eval=fets_eval)

    ts = TS(dof_resultants=True,
            sdomain=domain,
            # conversion to list (square brackets) is only necessary for slicing of
            # single dofs, e.g "get_left_dofs()[0,1]"
            #         bcond_list =  [ BCDof(var='u', dof = 0, value = 0.)     ] +
            #                    [ BCDof(var='u', dof = 2, value = 0.001 ) ]+
            #                    [ )     ],
            bcond_list=[BCDof(var='u', dof=0, value=0.),
                        #                        BCDof(var='u', dof = 1, link_dofs = [2], link_coeffs = [0.5],
                        #                              value = 0. ),
                        #                        BCDof(var='u', dof = 2, link_dofs = [3], link_coeffs = [1.],
                        #                              value = 0. ),
                        BCDof(var='f', dof=6, value=1,
                              # link_dofs = [2], link_coeffs = [2]
                              )],
            rtrace_list=[RTDofGraph(name='Fi,right over u_right (iteration)',
                                    var_y='F_int', idx_y=0,
                                    var_x='U_k', idx_x=1),
                         RTraceDomainListField(name='Stress',
                                               var='sig_app', idx=0),
                         RTraceDomainListField(name='Displacement',
                                               var='u', idx=0),
                         RTraceDomainListField(name='N0',
                                               var='N_mtx', idx=0,
                                               record_on='update')

                         ]
            )

    # Add the time-loop control
    tloop = TLoop(tstepper=ts,
                  tline=TLine(min=0.0, step=1, max=1.0))

    print('---- result ----')
    print(tloop.eval())
    print(ts.F_int)
    print(ts.rtrace_list[0].trace.ydata)

    # Put the whole stuff into the simulation-framework to map the
    # individual pieces of definition into the user interface.
    #
    from ibvpy.plugins.ibvpy_app import IBVPyApp
    app = IBVPyApp(ibv_resource=tloop)
    app.main()
Exemplo n.º 7
0
 def _get_domain(self):
     # Number of elements
     n_e_x = 20
     # Element definition
     domain = FEGrid(coord_max=(self.L_x, ),
                     shape=(n_e_x, ),
                     fets_eval=self.fets_eval)
     return domain
Exemplo n.º 8
0
 def _get_fe_grid_columns(self):
     return [
         FEGrid(coord_min=(0.0, 0.0, 0.0),
                coord_max=(1.0, 1.0, 1.0),
                geo_transform=column,
                shape=(1, 1, 1),
                fets_eval=self.fe_column) for column in self.columns
     ]
Exemplo n.º 9
0
 def _get_friction_fe_grid(self):
     fe_grid = FEGrid(coord_min=(0, 0),
                      coord_max=(1, 1),
                      level=self.friction_fe_level,
                      geo_transform=self.friction_geo,
                      shape=(self.friction_ne_x, self.friction_ne_y),
                      fets_eval=self.friction_fets)
     return fe_grid
Exemplo n.º 10
0
 def setUp(self):
     '''
     Construct the FEDomain with one FERefinementGrids (2,2) 
     '''
     self.fets_eval = FETS3D8H()
     self.grid = FEGrid(coord_max=(1., 1., 1.),
                        shape=(1, 1, 1),
                        fets_eval=self.fets_eval)
Exemplo n.º 11
0
    def _get_specmn_fe_grid(self):
        fe_grid = FEGrid(coord_max=(1, 1, 1),
                         shape=(self.shape_x, self.shape_y, self.shape_z),
                         level=self.specmn_fe_level,
                         geo_transform=self.barel_shell_geo,
                         fets_eval=self.specmn_fets)

        return fe_grid
Exemplo n.º 12
0
 def setUp(self):
     '''
     Construct the FEDomain with two FERefinementGrids (2,2) 
     '''
     self.domain1 = FEDomain()
     self.fets_eval = FETS2D4Q(mats_eval=MATS2DElastic())
     self.d1 = FERefinementGrid(name='d1', domain=self.domain1)
     g1 = FEGrid(coord_max=(1., 1., 0.),
                 shape=(2, 2),
                 fets_eval=self.fets_eval,
                 level=self.d1)
     self.d2 = FERefinementGrid(name='d2', domain=self.domain1)
     g2 = FEGrid(coord_min=(1., 0., 0.),
                 coord_max=(2., 1., 0.),
                 shape=(2, 2),
                 fets_eval=self.fets_eval,
                 level=self.d2)
Exemplo n.º 13
0
 def _get_buttstrap_clamp_fe_grid(self):
     fe_grid = FEGrid(coord_min=(0, 0),
                      coord_max=(1, 1),
                      level=self.buttstrap_clamp_fe_level,
                      geo_transform=self.buttstrap_clamp_geo,
                      shape=(1, self.buttstrap_ne_y),
                      fets_eval=self.buttstrap_fets)
     return fe_grid
Exemplo n.º 14
0
 def _get_specmn_fe_grid(self):
     # only a quarter of the beam is simulated due to symmetry:
     fe_grid = FEGrid(coord_min=(self.sym_elstmr_length, 0., 0.),
                      coord_max=(self.sym_specmn_length, self.sym_width,
                                 self.thickness),
                      shape=(self.shape_x, self.shape_y, self.shape_z),
                      level=self.specmn_fe_level,
                      fets_eval=self.specmn_fets)
     return fe_grid
Exemplo n.º 15
0
    def _get_fe_grid(self):

        elem_length = self.length / float(self.shape)

        fe_grid = FEGrid(coord_max=(self.length, ),
                         shape=(self.shape, ),
                         level=self.fe_grid_level,
                         fets_eval=self.fets)
        return fe_grid
Exemplo n.º 16
0
 def _get_fe_grid_roofs(self):
     return [
         FEGrid(coord_min=(0.0, 0.0, 0.0),
                coord_max=(1.0, 1.0, 1.0),
                geo_transform=hp_shell,
                shape=(self.n_elems_xy_quarter, self.n_elems_xy_quarter,
                       self.n_elems_z),
                fets_eval=self.fe_roof) for hp_shell in self.hp_shells
     ]
Exemplo n.º 17
0
def notched_bended_beam():

    fets_eval_4u = FETS2D4Q(mats_eval=MATS2DScalarDamage())
    fets_eval_cracked = FETSLSEval(parent_fets=fets_eval_4u)

    # Discretization
    fe_domain1 = FEGrid(coord_max=(5., 2., 0.),
                        shape=(3, 2),
                        fets_eval=fets_eval_4u)

    fe_child_domain = FERefinementGrid(parent_domain=fe_domain1,
                                       fets_eval=fets_eval_cracked,
                                       fine_cell_shape=(1, 1))

    crack_level_set = lambda X: X[0] - 2.5

    fe_child_domain.refine_elem((1, 0), crack_level_set)
    dots = fe_child_domain.new_dots()

    fe_domain = FEDomainList(subdomains=[fe_domain1])
    fe_domain_tree = FEDomainTree(domain_list=fe_domain)

    ts = TS(
        dof_resultants=True,
        sdomain=[fe_domain1, fe_child_domain],
        bcond_list=[
            BCDofGroup(var='u',
                       value=0.,
                       dims=[0, 1],
                       get_dof_method=fe_domain1.get_left_dofs),
            BCDofGroup(var='u',
                       value=0.,
                       dims=[0, 1],
                       get_dof_method=fe_domain1.get_right_dofs),
            BCDofGroup(var='f',
                       value=-1.,
                       dims=[1],
                       get_dof_method=fe_domain1.get_top_dofs),
        ],
        rtrace_list=[
            #                              RTDofGraph(name = 'Fi,right over u_right (iteration)' ,
            #                                   var_y = 'F_int', idx_y = 0,
            #                                   var_x = 'U_k', idx_x = 1),
            #                        RTraceDomainListField(name = 'Stress' ,
            #                             var = 'sig_app', idx = 0, warp = True ),
            #                             RTraceDomainField(name = 'Displacement' ,
            #                                        var = 'u', idx = 0),
            #                                 RTraceDomainField(name = 'N0' ,
            #                                              var = 'N_mtx', idx = 0,
            #                                              record_on = 'update')
            #
        ])

    # Add the time-loop control
    tloop = TLoop(tstepper=ts, tline=TLine(min=0.0, step=1, max=1.0))

    print(tloop.eval())
Exemplo n.º 18
0
def run_example():
    from ibvpy.api import \
        TStepper as TS, RTraceGraph, RTraceDomainListField, \
        RTraceDomainListInteg, TLoop, \
        TLine, BCDof, IBVPSolve as IS, DOTSEval
    from ibvpy.mats.mats2D.mats2D_conduction.mats2D_conduction import MATS2DConduction

    from ibvpy.api import BCDofGroup
    fets_eval = FETS2D4Q4T(mats_eval=MATS2DConduction(k=1.))

    print fets_eval.vtk_node_cell_data

    from ibvpy.mesh.fe_grid import FEGrid
    from ibvpy.mesh.fe_refinement_grid import FERefinementGrid
    from ibvpy.mesh.fe_domain import FEDomain
    from mathkit.mfn import MFnLineArray

    # Discretization
    fe_grid = FEGrid(coord_max=(1., 1., 0.), shape=(2, 2), fets_eval=fets_eval)

    tstepper = TS(
        sdomain=fe_grid,
        bcond_list=[
            BCDofGroup(var='u',
                       value=0.,
                       dims=[0],
                       get_dof_method=fe_grid.get_left_dofs),
            #                                   BCDofGroup( var='u', value = 0., dims = [1],
            # get_dof_method = fe_grid.get_bottom_dofs ),
            BCDofGroup(var='u',
                       value=.005,
                       dims=[0],
                       get_dof_method=fe_grid.get_top_right_dofs)
        ],
        rtrace_list=[
            #                     RTraceDomainListField(name = 'Damage' ,
            #                                    var = 'omega', idx = 0,
            #                                    record_on = 'update',
            #                                    warp = True),
            #                     RTraceDomainListField(name = 'Displacement' ,
            #                                    var = 'u', idx = 0,
            #                                    record_on = 'update',
            #                                    warp = True),
            #                    RTraceDomainListField(name = 'N0' ,
            #                                      var = 'N_mtx', idx = 0,
            # record_on = 'update')
        ])

    print tstepper.setup()
    return
    # Add the time-loop control
    tloop = TLoop(tstepper=tstepper,
                  debug=False,
                  tline=TLine(min=0.0, step=1.0, max=1.0))

    tloop.eval()
Exemplo n.º 19
0
 def _get_elstmr_fe_grid(self):
     x_max = self.sym_elstmr_length
     y_max = self.width / 2.
     z_max = self.thickness + self.elstmr_thickness
     fe_grid = FEGrid(coord_min=(0, 0, self.thickness),
                      coord_max=(x_max, y_max, z_max),
                      level=self.elstmr_fe_level,
                      shape=(self.mid_shape_x, self.shape_y, 1),
                      fets_eval=self.elstmr_fets)
     return fe_grid
Exemplo n.º 20
0
    def setUp(self):

        self.fets_eval = FETS1D2L(mats_eval=MATS1DElastic(E=10.))

        # Discretization
        self.fe_domain1 = FEGrid(coord_max=(3., 0., 0.),
                                 shape=(3, ),
                                 fets_eval=self.fets_eval)

        self.fe_domain2 = FEGrid(coord_min=(3., 0., 0.),
                                 coord_max=(6., 0., 0.),
                                 shape=(3, ),
                                 fets_eval=self.fets_eval)

        self.fe_domain3 = FEGrid(coord_min=(3., 0., 0.),
                                 coord_max=(6., 0., 0.),
                                 shape=(3, ),
                                 fets_eval=self.fets_eval)

        self.ts = TS(
            dof_resultants=True,
            sdomain=[self.fe_domain1, self.fe_domain2, self.fe_domain3],
            bcond_list=[
                BCDof(var='u', dof=0, value=0.),
                BCDof(var='u',
                      dof=4,
                      link_dofs=[3],
                      link_coeffs=[1.],
                      value=0.),
                BCDof(var='f', dof=7, value=1, link_dofs=[2], link_coeffs=[2])
            ],
            rtrace_list=[
                RTraceGraph(name='Fi,right over u_right (iteration)',
                            var_y='F_int',
                            idx_y=0,
                            var_x='U_k',
                            idx_x=1),
            ])

        # Add the time-loop control
        self.tloop = TLoop(tstepper=self.ts,
                           tline=TLine(min=0.0, step=1, max=1.0))
Exemplo n.º 21
0
def demo3d():

    # Geometry
    #
    length = 1.0

    from ibvpy.fets.fets3D import FETS3D8H, FETS3D8H20U, FETS3D8H27U, FETS3D8H20U
    from ibvpy.mats.mats3D import MATS3DElastic

    # Material and FE Formulation
    #
    lin_x_temperature = TemperatureLinFn(length=length, n_dims=3, offset=0.5)
    fets_eval = FETS3D8H20U(mats_eval=MATS3DElastic(
        E=30e3, nu=0.2, initial_strain=lin_x_temperature))
    fets_eval.vtk_r *= 0.99

    # Discretization
    #
    domain = FEGrid(coord_max=(length, length, length),
                    shape=(6, 3, 3),
                    fets_eval=fets_eval)

    bcond_list = [
        BCSlice(var='u',
                dims=[0, 1, 2],
                slice=domain[0, 0, 0, 0, 0, 0],
                value=0),
        BCSlice(var='u',
                dims=[0, 1],
                slice=domain[0, 0, -1, 0, 0, -1],
                value=0),
        BCSlice(var='u', dims=[0], slice=domain[0, -1, 0, 0, -1, 0], value=0),
    ]
    rtrace_list = [
        sig_trace, eps_trace, eps0_trace, eps1t_trace, max_p_sig_trace, u_trace
    ]
    for rtrace in rtrace_list:
        rtrace.position = 'int_pnts'
        rtrace.warp = False

    corner_dof = domain[-1, -1, -1, -1, -1, -1].dofs[0, 0, 2]

    ts = TS(sdomain=domain, bcond_list=bcond_list, rtrace_list=rtrace_list)

    # Time integration
    #

    tloop = TLoop(tstepper=ts, tline=TLine(min=0.0, step=3, max=1.0))
    tloop.eval()

    # Postprocessing
    #
    app = IBVPyApp(ibv_resource=tloop)
    app.main()
Exemplo n.º 22
0
 def _get_supprt_fe_grid(self):
     return FEGrid(
         coord_min=(0, 0, 0),
         coord_max=(1, 1, 1),
         level=self.supprt_fe_level,
         # use shape (2,2) in order to place support in the center of the steel support
         # corresponding to 4 elements of the slab mesh
         #
         shape=(self.shape_supprt_x, self.shape_supprt_x, 1),
         geo_transform=self.geo_supprt,
         fets_eval=self.supprt_fets)
Exemplo n.º 23
0
    def setUp(self):
        self.fets_eval = FETS1D2L(mats_eval=MATS1DElastic(E=10.))

        # Discretization
        self.domain = FEGrid(coord_max=(10., 0., 0.),
                             shape=(1, ),
                             fets_eval=self.fets_eval)

        self.ts = TS(sdomain=self.domain, dof_resultants=True)
        self.tloop = TLoop(tstepper=self.ts,
                           tline=TLine(min=0.0, step=1, max=1.0))
Exemplo n.º 24
0
 def _get_elstmr_fe_grid(self):
     fe_grid = FEGrid(coord_min=(self.sym_mid_zone_specmn_length -
                                 self.sym_elstmr_length, 0.,
                                 self.thickness),
                      coord_max=(self.sym_mid_zone_specmn_length +
                                 self.sym_elstmr_length, self.sym_width,
                                 self.thickness + self.elstmr_thickness),
                      level=self.elstmr_fe_level,
                      shape=(self.load_zone_shape_x, self.shape_y, 1),
                      fets_eval=self.elstmr_fets)
     return fe_grid
Exemplo n.º 25
0
    def example_2d():
        from ibvpy.mats.mats2D.mats2D_elastic.mats2D_elastic import MATS2DElastic
        from ibvpy.fets.fets2D.fets2D4q import FETS2D4Q

        fets_eval = FETS2D4Q(mats_eval=MATS2DElastic(E=2.1e5))

        # Discretization
        fe_domain1 = FEGrid(coord_max=(2., 5., 0.),
                            shape=(10, 10),
                            fets_eval=fets_eval)

        fe_subgrid1 = FERefinementLevel(parent=fe_domain1,
                                        fine_cell_shape=(1, 1))

        print 'children'
        print fe_domain1.children

        fe_subgrid1.refine_elem((5, 5))
        fe_subgrid1.refine_elem((6, 5))
        fe_subgrid1.refine_elem((7, 5))
        fe_subgrid1.refine_elem((8, 5))
        fe_subgrid1.refine_elem((9, 5))

        fe_domain = FEDomain(subdomains=[fe_domain1])

        ts = TS(dof_resultants=True,
                sdomain=fe_domain,
                bcond_list=[BCDofGroup(var='f', value=0.1, dims=[0],
                                       get_dof_method=fe_domain1.get_top_dofs),
                            BCDofGroup(var='u', value=0., dims=[0, 1],
                                       get_dof_method=fe_domain1.get_bottom_dofs),
                            ],
                rtrace_list=[RTraceGraph(name='Fi,right over u_right (iteration)',
                                         var_y='F_int', idx_y=0,
                                         var_x='U_k', idx_x=1),
                             RTraceDomainListField(name='Stress',
                                                   var='sig_app', idx=0, warp=True),
                             #                           RTraceDomainField(name = 'Displacement' ,
                             #                                        var = 'u', idx = 0),
                             #                                 RTraceDomainField(name = 'N0' ,
                             #                                              var = 'N_mtx', idx = 0,
                             # record_on = 'update')

                             ]
                )

        # Add the time-loop control
        tloop = TLoop(tstepper=ts,
                      tline=TLine(min=0.0, step=1, max=1.0))
#
        print tloop.eval()
        from ibvpy.plugins.ibvpy_app import IBVPyApp
        ibvpy_app = IBVPyApp(ibv_resource=tloop)
        ibvpy_app.main()
Exemplo n.º 26
0
def __demo__():

    from ibvpy.api import \
        TStepper as TS, RTDofGraph, RTraceDomainListField, TLoop, \
        TLine, BCDof
    from ibvpy.tmodel.mats1D.mats1D_elastic.mats1D_elastic import MATS1DElastic

    fets_eval = FETS1D2L(mats_eval=MATS1DElastic(E=10.))
    from ibvpy.mesh.fe_grid import FEGrid

    # Discretization
    domain = FEGrid(coord_max=(3., ), shape=(3, ), fets_eval=fets_eval)

    ts = TS(dof_resultants=True,
            sdomain=domain,
            bcond_list=[
                BCDof(var='u', dof=0, value=0.),
                BCDof(
                    var='f',
                    dof=3,
                    value=1,
                )
            ],
            rtrace_list=[
                RTDofGraph(name='Fi,right over u_right (iteration)',
                           var_y='F_int',
                           idx_y=0,
                           var_x='U_k',
                           idx_x=1),
                RTraceDomainListField(name='Stress', var='sig_app', idx=0),
                RTraceDomainListField(name='Displacement',
                                      var='u',
                                      idx=0,
                                      warp=True),
                RTraceDomainListField(name='N0',
                                      var='N_mtx',
                                      idx=0,
                                      record_on='update')
            ])

    # Add the time-loop control
    tloop = TLoop(tstepper=ts, tline=TLine(min=0.0, step=0.5, max=1.0))

    print('---- result ----')
    print(tloop.eval())
    print(ts.F_int)
    print(ts.rtrace_list[0].trace.ydata)

    # Put the whole stuff into the simulation-framework to map the
    # individual pieces of definition into the user interface.
    #
    app = IBVPyApp(ibv_resource=tloop)
    app.main()
Exemplo n.º 27
0
def demo1d():

    # Geometry
    #
    length = 1.0

    # Material and FE Formulation
    #
    from ibvpy.fets.fets1D import FETS1D2L, FETS1D2L3U
    from ibvpy.mats.mats1D import MATS1DElastic

    mats_eval = MATS1DElastic(E=100.,
                              initial_strain=TemperatureLinFn(length=length,
                                                              n_dims=1,
                                                              offset=0.5))
    fets_eval = FETS1D2L3U(mats_eval=mats_eval)
    fets_eval.vtk_r *= 0.99

    # Discretization
    #
    domain = FEGrid(coord_max=(length, 0., 0.),
                    n_elems=(10, ),
                    fets_eval=fets_eval)

    bcond_list = [
        BCSlice(var='u', dims=[0], slice=domain[0, 0], value=0),
        #BCSlice( var = 'u', dims = [0], slice = domain[-1, -1], value = 0 )
    ]

    ts = TS(sdomain=domain,
            bcond_list=bcond_list,
            rtrace_list=[sig_trace, eps_trace, eps0_trace, eps1t_trace])

    # Time integration
    #
    tloop = TLoop(tstepper=ts, tline=TLine(min=0.0, step=1, max=1.0))

    tloop.eval()

    # Postprocessing
    #
    legend = []
    plot_sig(eps_trace, 'eps', legend)
    plot_sig(eps0_trace, 'eps0', legend)
    plot_sig(eps1t_trace, 'eps1t', legend)
    p.legend(legend)
    p.show()
Exemplo n.º 28
0
def demo2d():

    # Geometry
    #
    length = 1.0

    from ibvpy.fets.fets2D import FETS2D4Q, FETS2D4Q8U, FETS2D4Q12U
    from ibvpy.mats.mats2D import MATS2DElastic

    # Material and FE Formulation
    #
    lin_x_temperature = TemperatureLinFn(length=length, n_dims=2)
    fets_eval = FETS2D4Q12U(mats_eval=MATS2DElastic(
        E=30e5, nu=0.2, initial_strain=lin_x_temperature))
    fets_eval.vtk_r *= 0.99

    # Discretization
    #
    domain = FEGrid(coord_max=(length, length, 0.),
                    shape=(10, 10),
                    fets_eval=fets_eval)

    bcond_list = [
        BCSlice(var='u', dims=[0, 1], slice=domain[0, 0, 0, 0], value=0),
        BCSlice(var='u', dims=[1], slice=domain[0, -1, 0, -1], value=0),
    ]
    rtrace_list = [sig_trace, eps_trace, eps0_trace, eps1t_trace, u_trace]
    ts = TS(
        sdomain=domain,
        bcond_list=bcond_list,
        rtrace_list=rtrace_list,
    )

    # Time integration
    #
    tloop = TLoop(tstepper=ts, tline=TLine(min=0.0, step=1, max=1.0))
    tloop.eval()

    # Postprocessing
    #
    app = IBVPyApp(ibv_resource=tloop)
    app.main()
Exemplo n.º 29
0
    def _get_fe_grid_roof(self):
        hp_shell = GeoHPShell(thickness = 0.6)

        square_to_circle = GeoSquare2Circle(post_transform = hp_shell,
                                             circle_radius = 0.15,
                                             #Scircle_center = [4.0, 4.0, 0.0],
                                             square_edge = 0.6)
        fe_grid = FEGrid(coord_min = (-1.0, -1.0, 0.0),
                          coord_max = (1.0, 1.0, 1.0),
                          geo_transform = square_to_circle,
                          shape = (self.n_elems_xy, self.n_elems_xy, self.n_elems_z),
                          fets_eval = self.fe_roof)

        mid_idx = self.mid_idx
        idx_min, idx_max = self.idx_min, self.idx_max
        print 'idx_min', idx_min
        print 'idx_max', idx_max
        interior_elems = fe_grid[ idx_min:idx_max, idx_min:idx_max, :, :, :, : ].elems
        fe_grid.inactive_elems = list(interior_elems)
        print 'elems', interior_elems
        return fe_grid
Exemplo n.º 30
0
    def test_rg_addition(self):
        '''Check numbering after addition of FERefinementGrid
        Add another FERefinementGrid (2,2) as a child of grid 1
        Check the n_dofs of FEDomain to verify the re-enumeration 
        Check the elem_dof_map of the grid 3. 
        '''
        d3 = FERefinementGrid(name='d3', parent=self.d1)
        g3 = FEGrid(coord_max=(1., 1., 0.),
                    shape=(2, 2),
                    fets_eval=self.fets_eval,
                    level=d3)
        n_dofs = self.domain1.n_dofs
        #check the n_dofs of the domain after addition
        self.assertEqual(n_dofs, 54)
        #check elem_dof_map of added subdomain
        elem_dof_map = d3.elem_dof_map

        edm = [
            36, 37, 42, 43, 44, 45, 38, 39, 38, 39, 44, 45, 46, 47, 40, 41, 42,
            43, 48, 49, 50, 51, 44, 45, 44, 45, 50, 51, 52, 53, 46, 47
        ]

        for e_, e_ex_ in zip(elem_dof_map.flatten(), edm):
            self.assertEqual(e_, e_ex_)