def results(self): results = Tree({'MEAN': self.mean_stretch/self.sess_count, 'MEAN_REQUEST': self.mean_req_stretch/self.sess_count, 'MEAN_CONTENT': self.mean_cont_stretch/self.sess_count}) if self.cdf: results['CDF'] = cdf(self.stretch_data) results['CDF_REQUEST'] = cdf(self.req_stretch_data) results['CDF_CONTENT'] = cdf(self.cont_stretch_data) return results
def results(self): results = Tree({ "MEAN": self.mean_stretch / self.sess_count, "MEAN_REQUEST": self.mean_req_stretch / self.sess_count, "MEAN_CONTENT": self.mean_cont_stretch / self.sess_count, }) if self.cdf: results["CDF"] = cdf(self.stretch_data) results["CDF_REQUEST"] = cdf(self.req_stretch_data) results["CDF_CONTENT"] = cdf(self.cont_stretch_data) return results
def results(self): if self.cdf: results['CDF'] = cdf(self.latency_data) results = Tree( {'SATISFACTION': 1.0 * self.n_satisfied / self.sess_count}) per_service_sats = {} for service in self.service_requests.keys(): per_service_sats[service] = 1.0 * self.service_satisfied[ service] / self.service_requests[service] results['PER_SERVICE_SATISFACTION'] = per_service_sats results['PER_SERVICE_REQUESTS'] = self.service_requests results['PER_SERVICE_SAT_REQUESTS'] = self.service_satisfied results['SAT_TIMES'] = self.satrate_times results['IDLE_TIMES'] = self.idle_times results['NODE_IDLE_TIMES'] = self.node_idle_times results['LATENCY'] = self.latency_times results['DEADLINE_METRIC'] = self.deadline_metric_times results['CLOUD_SAT_TIMES'] = self.cloud_sat_times results['INSTANTIATION_OVERHEAD'] = self.instantiations_times #print "Printing Sat. rate times:" #for key in sorted(self.satrate_times): # print (repr(key) + " " + repr(self.satrate_times[key])) #print "Printing Idle times:" #for key in sorted(self.idle_times): # print (repr(key) + " " + repr(self.idle_times[key])) #results['VMS_PER_SERVICE'] = self.vms_per_service return results
def results(self): results = Tree({ 'MEAN_RSN_ZERO_HOP': np.mean(self.rsn_hit_ratio[0]), 'MEAN_RSN_ONE_HOP': np.mean(self.rsn_hit_ratio[1]), 'MEAN_RSN_TWO_HOP': np.mean(self.rsn_hit_ratio[2]), 'MEAN_RSN_THREE_HOP': np.mean(self.rsn_hit_ratio[3]), }) results['MEAN_RSN_ALL'] = results['MEAN_RSN_ZERO_HOP'] + \ results['MEAN_RSN_ONE_HOP'] + \ results['MEAN_RSN_TWO_HOP'] + \ results['MEAN_RSN_THREE_HOP'] if self.cdf: results.update({ 'CDF_RSN_ZERO_HOP': cdf(self.rsn_hit_ratio[0]), 'CDF_RSN_ONE_HOP': cdf(self.rsn_hit_ratio[1]), 'CDF_RSN_TWO_HOP': cdf(self.rsn_hit_ratio[2]), 'CDF_RSN_THREE_HOP': cdf(self.rsn_hit_ratio[3]), }) return results
def test_cdf_all_zeros(self): data = np.zeros(200) x, cdf = stats.cdf(data) exp_x = [0] exp_cdf = [1.0] self.assertEqual(len(x), len(exp_x)) self.assertEqual(len(cdf), len(exp_cdf)) for i in range(len(exp_x)): self.assertAlmostEqual(x[i], exp_x[i]) self.assertAlmostEqual(cdf[i], exp_cdf[i])
def test_cdf_all_zeros(self): data = np.zeros(200) x, cdf = stats.cdf(data) exp_x = [0] exp_cdf = [1.0] assert len(x) == len(exp_x) assert len(cdf) == len(exp_cdf) for i in range(len(exp_x)): assert round(abs(x[i] - exp_x[i]), 7) == 0 assert round(abs(cdf[i] - exp_cdf[i]), 7) == 0
def test_cdf_known_input(self): data = [-25, -25, 0.5, 1.1, 1.1, 1.1, 1.4, 1.4, 1.4, 1.4] # CDF(-25) = 0.2 # CDF(0.5) = 0.3 # CDF(1.1) = 0.6 # CDF(1.5) = 1.0 x, cdf = stats.cdf(data) exp_x = [-25, 0.5, 1.1, 1.4] exp_cdf = [0.2, 0.3, 0.6, 1.0] self.assertEqual(len(x), len(exp_x)) self.assertEqual(len(cdf), len(exp_cdf)) for i in range(len(exp_x)): self.assertAlmostEqual(x[i], exp_x[i]) self.assertAlmostEqual(cdf[i], exp_cdf[i])
def test_cdf_known_input(self): data = [-25, -25, 0.5, 1.1, 1.1, 1.1, 1.4, 1.4, 1.4, 1.4] # CDF(-25) = 0.2 # CDF(0.5) = 0.3 # CDF(1.1) = 0.6 # CDF(1.5) = 1.0 x, cdf = stats.cdf(data) exp_x = [-25, 0.5, 1.1, 1.4] exp_cdf = [0.2, 0.3, 0.6, 1.0] assert len(x) == len(exp_x) assert len(cdf) == len(exp_cdf) for i in range(len(exp_x)): assert round(abs(x[i] - exp_x[i]), 7) == 0 assert round(abs(cdf[i] - exp_cdf[i]), 7) == 0
def results(self): # Idle times num_nodes = len(self.css.keys()) node_idle_times = [0.0 for x in range(0, num_nodes)] node_vms = [0 for x in range(0, num_nodes)] for flow in self.flow_start.keys(): duration = self.flow_end[flow] - self.flow_start[flow] self.latency += duration for node, cs in self.css.items(): num_of_vms = cs.numOfVMs node_vms[node] = num_of_vms for indx in range(0, num_of_vms): node_idle_times[node] += cs.getIdleTime(indx, self.last_timestamp) node_idle_times[node] /= num_of_vms # Idle times if self.cdf: results['CDF'] = cdf(self.latency_data) results = Tree({'LATENCY' : 1.0*self.latency/self.sess_count}) per_service_sats = {} for service in self.service_requests.keys(): per_service_sats[service] = 1.0*self.service_satisfied[service]/self.service_requests[service] results['PER_SERVICE_REQUESTS'] = self.service_requests results['IDLE_TIMES'] = node_idle_times results['NUM_OF_VMS'] = node_vms #print "Printing Idle times:" #node = 0 #for idle_time in node_idle_times: # print (repr(node) + " " + repr(node_idle_times[node])) # node += 1 #print ("Flow starts:\n") #for flow in self.flow_start.keys(): # print (repr(flow) + " " + repr(self.flow_start[flow])) #print ("Flow ends:\n") #for flow in self.flow_end.keys(): # print (repr(flow) + " " + repr(self.flow_end[flow])) return results
def test_cdf_array_input(self): data = np.array(list(range(2000))) x, cdf = stats.cdf(data) self.assertEqual(len(x), 2000) self.assertAlmostEqual(cdf[-1], 1.0)
def results(self): results = Tree({'MEAN': self.latency/self.sess_count}) if self.cdf: results['CDF'] = cdf(self.latency_data) return results
def test_cdf_deque_input(self): data = collections.deque(range(2000)) x, cdf = stats.cdf(data) self.assertEqual(len(x), 2000) self.assertAlmostEqual(cdf[-1], 1.0)
def results(self): results = Tree({"MEAN": self.latency / self.sess_count}) if self.cdf: results["CDF"] = cdf(self.latency_data) return results
def test_cdf_array_input(self): data = np.array(list(range(2000))) x, cdf = stats.cdf(data) assert len(x) == 2000 assert round(abs(cdf[-1] - 1.0), 7) == 0
def test_cdf_deque_input(self): data = collections.deque(range(2000)) x, cdf = stats.cdf(data) assert len(x) == 2000 assert round(abs(cdf[-1] - 1.0), 7) == 0