Exemplo n.º 1
0
    dir_name = "/data/user/brelethford/AGN_Core/Plots/fast/plots/stacking/{}yr/{}/".format(len(seasons),cat)
    #dir_name = "/home/brelethford/public_html/skylab/fast/plots/stacking/{}yr/{}/{}/".format(len(seasons),cat,weight)
    subprocess.call(['mkdir', '-p', '{0}'.format(dir_name)])
else:
    dir_name = "/data/user/brelethford/AGN_Core/Plots/fast/plots/allsky/{0}yr/dec_{1:.3f}/".format(len(seasons),np.degrees(src_dec))
    #dir_name = "/home/brelethford/public_html/skylab/fast/plots/allsky/{0}yr/dec_{1:.3f}/".format(len(seasons),np.degrees(src_dec))
    subprocess.call(['mkdir', '-p', '{0}'.format(dir_name)])

def get_bg_fit():
    ts_parameters = fit_background(trials, dir_name + "background_trials_%s.png" % tag)
    print ("Finished background fit.")
    return ts_parameters

#save trials and fit params
outfile = sens_dir + 'trials.array'
trials = cache.get(outfile, get_background)

outfile = sens_dir + 'bg_fit.array'
ts_parameters = cache.get(outfile, get_bg_fit)

median_ts, eta, ndf, scale = ts_parameters



print("\nBackground only TS > 0 described by:")
print(" Median TS: %6.4f" % median_ts)
print(" PDF(TS>0): %6.4f * chi2(ts / %.4f, ndf = %.4f)" % (eta, scale, ndf))

###################################
# BACKGROUND ONLY TS DISTRIBUTION #
###################################
Exemplo n.º 2
0
# BACKGROUND ONLY TS DISTRIBUTION #
###################################

print("\nRunning injection trials with {} events...".format(n_inj))


def get_trials():
    t0 = time.time()
    trials = llh.do_trials(args.nscramble,
                           injector=inj,
                           mean_signal=n_inj,
                           src_ra=src_ra,
                           src_dec=src_dec,
                           src_extension=src_ext,
                           src_w=src_w)
    dt = time.time() - t0
    print(" Completed %d trials in %.2f sec (%.2f trials/sec)" %
          (trials.size, dt, trials.size / dt))
    return trials


#save trials and fit params
outfile = sens_dir + 'trials_batch_{}.array'.format(batch)
trials = cache.get(outfile, get_trials)

print("\nInjection with {} events batch {} finished.".format(n_inj, batch))

###################################
# BACKGROUND ONLY TS DISTRIBUTION #
###################################
Exemplo n.º 3
0
    redshift = [float(catalog[i][15]) for i in range(len(catalog))]
    lum = [float(catalog[i][16]) for i in range(len(catalog))]
    gamma = [float(catalog[i][11]) for i in range(len(catalog))]
    flux = [float(catalog[i][7]) for i in range(len(catalog))]
    params = {
        'ra': ra,
        'dec': dec,
        'redshift': redshift,
        'gamma': gamma,
        'flux': flux,
        'lum': lum
    }
    return params


params = cache.get(datafolder + 'SwiftBAT70m/pickle/params.pickle',
                   get_SwiftBAT_params)

###Now I'll read in the background TS stuff.###
datafolder = '/data/user/brelethford/Output/stacking_sensitivity/SwiftBAT70m/flux/background_trials/'

files = [
    cache.load(datafolder + file) for file in os.listdir(datafolder)
    if file.endswith('.array')
]
n_inj = []
nsources = []
TS = []
beta = (0.5)  #For background ts
TS_beta = []  #Calculated from the total TS median after we get all the TS.
beta_err = []
gamma = []
Exemplo n.º 4
0
                TS.append(file['TS'][item])
    TSs = TS
    eta = float(np.count_nonzero(TSs)) / len(TSs)
    fit = fitfun(eta=eta, df=2.)
    TSval5sig = fit.isf(norm.sf(5))
    return TSval5sig


if corrected:
    backfolder = '/data/user/brelethford/Output/stacking_sensitivity/{0}/{1}yr_corrected/{2}/background_trials/'.format(
        catalog, str(years), llhweight)
else:
    backfolder = '/data/user/brelethford/Output/stacking_sensitivity/{0}/{1}yr/{2}/background_trials/'.format(
        catalog, str(years), llhweight)

TSval_median = cache.get(backfolder + 'TSval.pickle', getTSval)
TSval5sig = cache.get(backfolder + 'TSval5sig.pickle', getTSval5sig)

exp40 = np.load(datafolder + '/IC40_exp.npy')
exp59 = np.load(datafolder + '/IC59_exp.npy')
exp79 = np.load(datafolder + '/IC79b_exp.npy')
exp86 = np.load(datafolder + '/IC86_exp.npy')
if corrected:
    mc40 = np.load(datafolder + '/IC40_corrected_MC.npy')
    mc59 = np.load(datafolder + '/IC59_corrected_MC.npy')
    mc79 = np.load(datafolder + '/IC79b_corrected_MC.npy')
    mc86 = np.load(datafolder + '/IC86_corrected_MC.npy')
else:
    mc40 = np.load(datafolder + '/IC40_MC.npy')
    mc59 = np.load(datafolder + '/IC59_MC.npy')
    mc79 = np.load(datafolder + '/IC79b_MC.npy')
Exemplo n.º 5
0
###################################
# BACKGROUND ONLY TS DISTRIBUTION #
###################################

print("\nRunning background only trials ...")


def get_background():
    t0 = time.time()
    trials = llh.do_trials(args.nscramble,
                           src_ra=src_ra,
                           src_dec=src_dec,
                           src_extension=src_ext,
                           src_w=src_w)
    dt = time.time() - t0
    print(" Completed %d trials in %.2f sec (%.2f trials/sec)" %
          (trials.size, dt, trials.size / dt))
    return trials


#save trials and fit params
outfile = sens_dir + 'trials_batch_{}.array'.format(batch)
trials = cache.get(outfile, get_background)

print("\nBackground batch {} finished.".format(batch))

###################################
# BACKGROUND ONLY TS DISTRIBUTION #
###################################
Exemplo n.º 6
0
    redshift = [float(catalog[i][15]) for i in range(len(catalog))]
    lum = [float(catalog[i][16]) for i in range(len(catalog))]
    gamma = [float(catalog[i][11]) for i in range(len(catalog))]
    flux = [float(catalog[i][7]) for i in range(len(catalog))]
    params = {
        'ra': [ra[0]],
        'dec': [dec[0]],
        'redshift': [redshift[0]],
        'gamma': [gamma[0]],
        'flux': [flux[0]],
        'lum': [lum[0]]
    }
    return params


params = cache.get(datafolder + 'SwiftBAT70m/pickle/onesource.pickle',
                   get_SwiftBAT_params)

###Now I'll read in the background TS stuff.###
datafolder = '/data/user/brelethford/Output/stacking_sensitivity/SwiftBAT70m/{}/background_trials/'.format(
    llhweight)

files = [
    cache.load(datafolder + file) for file in os.listdir(datafolder)
    if file.endswith('.array')
]
n_inj = []
nsources = []
TS = []
beta = (0.5)  #For background ts
TS_beta = []  #Calculated from the total TS median after we get all the TS.
beta_err = []
Exemplo n.º 7
0
    MultiPointSourceLLH.weighted_sensitivity(llhmodel,
                                             src_ra=np.atleast_1d(0.),
                                             src_dec=np.atleast_1d(src_dec[i]),
                                             alpha=.5,
                                             beta=.9,
                                             inj=inj,
                                             trials={
                                                 'n_inj': [],
                                                 'TS': [],
                                                 'nsources': [],
                                                 'gamma': []
                                             },
                                             bckg_trials=bckg_trials,
                                             eps=10.99,
                                             n_iter=1)
    flux_array.append(inj.mu2flux(1) * 1000)

for i in range(len(src_dec)):
    print('for declination = ' + str(src_dec[i]) + ', flux = ' +
          str(flux_array[i]))


def get_results():
    results = {'dec': src_dec, 'flux': flux_array}
    return results


results = cache.get(
    '/data/user/brelethford/Output/stacking_sensitivity/testing/onesource.pickle',
    get_results)
Exemplo n.º 8
0
backfolder = '/data/user/brelethford/Output/stacking_sensitivity/{0}/bstacking_{1}yr/{2}/schatto79_background_trials/'.format(catalog, str(years), llhweight)

def getTSval():
  files = [cache.load(backfolder+file) for file in os.listdir(backfolder) if file.endswith('.array')]
  fitfun = delta_chi2
  TS=[]
  for file in files:
    for item in range(len(file['n_inj'])):
      if file['n_inj'][item] ==0:
        TS.append(file['TS'][item])
  TSs=TS
  fit = fitfun(TSs, df=2., floc=0., fscale=1.)
  TSval = np.asscalar(fit.isf(norm.sf(5)))
  return TSval

TSval = cache.get(backfolder + 'TSval5sig.pickle', getTSval)
print ('TSval = ' + str(TSval))
#Now I've defined all the possible modelweights for each catalog (I can add new ones later). Now I'll read in the years of data.
if catalog == '4yr_Starburst':
    import starburst_data_schatto79 as datascript
else:
    import new_data_multi as datascript

##Here I add an argument for the sole purpose of having separate background files differently named. ##

## We'll assign the proper weighting scheme for the search, then use it to calculate and cache the associated bckg trials: ##

llh40= datascript.init40(energy=True,mode='all')
llh59= datascript.init59(energy=True,mode='all')
llh79 = datascript.init79(energy=True,mode='all')
llh86I= datascript.init86I(energy=True,mode='all')
Exemplo n.º 9
0
def getting(filename, *a, **kw):
    prush('<-> {0} ...'.format(filename))
    return cache.get(filename, *a, **kw)
Exemplo n.º 10
0
muex86I_data = getBoth('SplineMPEMuEXDifferential','energy',fdata_86_1)

#Doing ra and dec calculations take a while - pickle?
mjd86I_sim=getBoth('SplineMPE','time',fsim_86_1)
mjd86I_data = getBoth('SplineMPE','time',fdata_86_1)

#I'll recalculate the ras, since we need to unblind before using the actual ras.
def get_coords():
	ra86I_sim,dec86I_sim=astro.dir_to_equa(zen86I_sim,azi86I_sim,mjd86I_sim)
	ra86I_data,dec86I_data=astro.dir_to_equa(zen86I_data,azi86I_data,mjd86I_data) 
	#scramble RA! We can't know this until unblinding. (Should I fix these in place, or renew them each time?)
	ra86I_sim = np.random.random(len(ra86I_sim))*2*np.pi
	ra86I_data = np.random.random(len(ra86I_data))*2*np.pi
	return ra86I_sim, dec86I_sim , ra86I_data, dec86I_data

ra86I_sim, dec86I_sim , ra86I_data, dec86I_data = cache.get (filename_pickle+"coords.pickle", get_coords)

#Let's now make a histogram of the sin(decs). In order to hist a MC set, we should first weight it with...

honda = NewNuFlux.makeFlux('honda2006')
honda.knee_reweighting_model = 'gaisserH3a_elbert' 
flux = honda.getFlux

#Weighting fcn for MC. Later on we'll need to limit the data to a certain dec band, so let's make the masking optional. To pass it a mask, we'll need to specify the dec band (i.e., pass the function [bandmask_sim[bandnum]]).

def simweight(fsim,gamma,mask=None):
	if mask == None:
	  mask=np.cast[np.bool](np.ones_like(getBoth('I3MCWeightDict','OneWeight',fsim)))
	OneWeight=getBoth('I3MCWeightDict','OneWeight',fsim)[:][mask]
	zen_sim = getBoth('MCPrimary1','zenith',fsim)[mask]
	energy_sim=getBoth('MCPrimary1','energy',fsim)[mask]