Exemplo n.º 1
0
def test_load_form_df():
    """Ensure reading dataset from pandas dataframe is OK."""

    # DF creation.
    ratings_dict = {
        'itemID': [1, 1, 1, 2, 2],
        'userID': [9, 32, 2, 45, '10000'],
        'rating': [3, 2, 4, 3, 1]
    }
    df = pd.DataFrame(ratings_dict)

    reader = Reader(rating_scale=(1, 5))
    data = Dataset.load_from_df(df[['userID', 'itemID', 'rating']], reader)

    # Assert split and folds can be used without problems
    with pytest.warns(UserWarning):
        data.split(2)
        assert sum(1 for _ in data.folds()) == 2

    # assert users and items are correctly mapped
    trainset = data.build_full_trainset()
    assert trainset.knows_user(trainset.to_inner_uid(9))
    assert trainset.knows_user(trainset.to_inner_uid('10000'))
    assert trainset.knows_item(trainset.to_inner_iid(2))

    # assert r(9, 1) = 3 and r(2, 1) = 4
    uid9 = trainset.to_inner_uid(9)
    uid2 = trainset.to_inner_uid(2)
    iid1 = trainset.to_inner_iid(1)
    assert trainset.ur[uid9] == [(iid1, 3)]
    assert trainset.ur[uid2] == [(iid1, 4)]

    # assert at least rating file or dataframe must be specified
    with pytest.raises(ValueError):
        data = Dataset.load_from_df(None, None)

    # mess up the column ordering and assert that users are not correctly
    # mapped
    data = Dataset.load_from_df(df[['rating', 'itemID', 'userID']], reader)
    trainset = data.build_full_trainset()
    with pytest.raises(ValueError):
        trainset.to_inner_uid('10000')
Exemplo n.º 2
0
def test_build_anti_testset():
    ratings_dict = {
        'itemID': [1, 2, 3, 4, 5, 6, 7, 8, 9],
        'userID': [1, 2, 3, 4, 5, 6, 7, 8, 9],
        'rating': [1, 2, 3, 4, 5, 6, 7, 8, 9]
    }
    df = pd.DataFrame(ratings_dict)

    reader = Reader(rating_scale=(1, 5))
    data = Dataset.load_from_df(df[['userID', 'itemID', 'rating']], reader)
    with pytest.warns(UserWarning):
        data.split(2)
        trainset, __testset = next(data.folds())
    # fill with some specific value
    for fillvalue in (0, 42., -1):
        anti = trainset.build_anti_testset(fill=fillvalue)
        for (u, i, r) in anti:
            assert r == fillvalue
    # fill with global_mean
    anti = trainset.build_anti_testset(fill=None)
    for (u, i, r) in anti:
        assert r == trainset.global_mean
    expect = trainset.n_users * trainset.n_items
    assert trainset.n_ratings + len(anti) == expect