Exemplo n.º 1
0
def update_line(num, print_loss, data, axes, epochsInds, test_error, test_data, epochs_bins, loss_train_data, loss_test_data, colors,
                font_size = 18, axis_font=16, x_lim = [0,12.2], y_lim=[0, 1.08], x_ticks = [], y_ticks = []):
    """Update the figure of the infomration plane for the movie"""
    #Print the line between the points
    cmap = ListedColormap(LAYERS_COLORS)
    segs = []
    for i in range(0, data.shape[1]):
        x = data[0, i, num, :]
        y = data[1, i, num, :]
        points = np.array([x, y]).T.reshape(-1, 1, 2)
        segs.append(np.concatenate([points[:-1], points[1:]], axis=1))
    segs = np.array(segs).reshape(-1, 2, 2)
    axes[0].clear()
    if len(axes)>1:
        axes[1].clear()
    lc = LineCollection(segs, cmap=cmap, linestyles='solid',linewidths = 0.3, alpha = 0.6)
    lc.set_array(np.arange(0,5))
    #Print the points
    for layer_num in range(data.shape[3]):
        axes[0].scatter(data[0, :, num, layer_num], data[1, :, num, layer_num], color = colors[layer_num], s = 35,edgecolors = 'black',alpha = 0.85)
    axes[1].plot(epochsInds[:num], 1 - np.mean(test_error[:, :num], axis=0), color ='r')

    title_str = 'Information Plane - Epoch number - ' + str(epochsInds[num])
    plt_ut.adjustAxes(axes[0], axis_font, title_str, x_ticks, y_ticks, x_lim, y_lim, set_xlabel=True, set_ylabel=True,
               x_label='$I(X;T)$', y_label='$I(T;Y)$')
    title_str = 'Precision as function of the epochs'
    plt_ut.adjustAxes(axes[1], axis_font, title_str, x_ticks, y_ticks, x_lim, y_lim, set_xlabel=True, set_ylabel=True,
               x_label='# Epochs', y_label='Precision')
Exemplo n.º 2
0
def plot_all_epochs(gen_data, I_XT_array, I_TY_array, axes, epochsInds, f, index_i, index_j, size_ind,
                    font_size, y_ticks, x_ticks, colorbar_axis, title_str, axis_font, bar_font, save_name, plot_error = True,index_to_emphasis=1000):
    """Plot the infomration plane with the epochs in diffrnet colors """
    #If we want to plot the train and test error
    if plot_error:
        fig_strs = ['train_error','test_error','loss_train','loss_test' ]
        fig_data = [np.squeeze(gen_data[fig_str]) for fig_str in fig_strs]
        f1 = plt.figure(figsize=(12, 8))
        ax1 = f1.add_subplot(111)
        mean_sample = False if len(fig_data[0].shape)==1 else True
        if mean_sample:
            fig_data = [ np.mean(fig_data_s, axis=0) for fig_data_s in fig_data]
        for i in range(len(fig_data)):
            ax1.plot(epochsInds, fig_data[i],':', linewidth = 3 , label = fig_strs[i])
        ax1.legend(loc='best')
    f = plt.figure(figsize=(12, 8))
    axes = f.add_subplot(111)
    axes = np.array([[axes]])

    I_XT_array = np.squeeze(I_XT_array)
    I_TY_array = np.squeeze(I_TY_array)
    if len(I_TY_array[0].shape) >1:
        I_XT_array = np.mean(I_XT_array, axis=0)
        I_TY_array = np.mean(I_TY_array, axis=0)
    max_index = size_ind if size_ind != -1 else I_XT_array.shape[0]

    cmap = plt.get_cmap('gnuplot')
    #For each epoch we have diffrenet color
    colors = [cmap(i) for i in np.linspace(0, 1, epochsInds[max_index-1]+1)]
    #Change this if we have more then one network arch
    nums_arc= -1
    #Go over all the epochs and plot then with the right color
    for index_in_range in range(0, max_index):
        XT = I_XT_array[index_in_range, :]
        TY = I_TY_array[index_in_range, :]
        #If this is the index that we want to emphsis
        if epochsInds[index_in_range] ==index_to_emphasis:
            axes[index_i, index_j].plot(XT, TY, marker='o', linestyle=None, markersize=19, markeredgewidth=0.04,
                                        linewidth=2.1,
                                        color='g',zorder=10)
        else:
                axes[index_i, index_j].plot(XT[:], TY[:], marker='o', linestyle='-', markersize=12, markeredgewidth=0.01, linewidth=0.2,
                                color=colors[int(epochsInds[index_in_range])])
    plt_ut.adjustAxes(axes[index_i, index_j], axis_font=axis_font, title_str=title_str, x_ticks=x_ticks,
                      y_ticks=y_ticks, x_lim=[0,25.1], y_lim=None,
                      set_xlabel=index_i == axes.shape[0] - 1, set_ylabel=index_j == 0, x_label='$I(X;T)$',
                      y_label='$I(T;Y)$', set_xlim=False,
                      set_ylim=False, set_ticks=True, label_size=font_size)
    #Save the figure and add color bar
    if index_i ==axes.shape[0]-1 and index_j ==axes.shape[1]-1:
        plt_ut.create_color_bar(f, cmap, colorbar_axis, bar_font, epochsInds,title='Epochs')
        f.savefig(save_name+'.jpg', dpi=500, format='jpg')
Exemplo n.º 3
0
def update_line_specipic_points(nums, data, axes, to_do, font_size, axis_font):
    """Update the lines in the axes for snapshot of the whole process"""
    colors =LAYERS_COLORS
    x_ticks = [0, 2, 4, 6, 8, 10]
    #Go over all the snapshot
    for i in range(len(nums)):
        num = nums[i]
        #Plot the right layer
        for layer_num in range(data.shape[3]):
            axes[i].scatter(data[0, :, num, layer_num], data[1, :, num, layer_num], color = colors[layer_num], s = 105,edgecolors = 'black',alpha = 0.85)
        plt_ut.adjustAxes(axes[i], axis_font=axis_font, title_str='', x_ticks=x_ticks, y_ticks=[], x_lim=None, y_lim=None,
                  set_xlabel=to_do[i][0], set_ylabel=to_do[i][1], x_label='$I(X;T)$', y_label='$I(T;Y)$', set_xlim=True, set_ylim=True,
                  set_ticks=True, label_size=font_size)
Exemplo n.º 4
0
def update_axes(axes, xlabel, ylabel, xlim, ylim, title, xscale, yscale, x_ticks, y_ticks, p_0, p_1
                ,font_size = 30, axis_font = 25,legend_font = 16 ):
    """adjust the axes to the ight scale/ticks and labels"""
    categories =6*['']
    labels = ['$10^{-5}$', '$10^{-4}$', '$10^{-3}$', '$10^{-2}$', '$10^{-1}$', '$10^0$', '$10^1$']
    #The legents of the mean and the std
    leg1 = plt.legend(p_0, categories, title=r'$\|Mean\left(\nabla{W_i}\right)\|$', loc='best',fontsize = legend_font,markerfirst = False, handlelength = 5)
    leg2 = plt.legend(p_1, categories, title=r'$STD\left(\nabla{W_i}\right)$', loc='best',fontsize = legend_font ,markerfirst = False,handlelength = 5)
    leg1.get_title().set_fontsize('21')  # legend 'Title' fontsize
    leg2.get_title().set_fontsize('21')  # legend 'Title' fontsize
    plt.gca().add_artist(leg1)
    plt.gca().add_artist(leg2)
    plt_ut.adjustAxes(axes,axis_font=20,title_str='', x_ticks=x_ticks, y_ticks=y_ticks, x_lim=xlim, y_lim=ylim,
               set_xlabel=True, set_ylabel=True, x_label=xlabel, y_label=ylabel,set_xlim=True,set_ylim=True, set_ticks=True,label_size=font_size, set_yscale=True,
               set_xscale = True, yscale=yscale, xscale=xscale, ytick_labels = labels, genreal_scaling=True)
Exemplo n.º 5
0
def plot_by_training_samples(I_XT_array, I_TY_array, axes, epochsInds, f, index_i, index_j, size_ind, font_size, y_ticks, x_ticks, colorbar_axis, title_str, axis_font, bar_font, save_name, samples_labels):
    """Print the final epoch of all the diffrenet training samples size """
    max_index = size_ind if size_ind!=-1 else I_XT_array.shape[2]-1
    cmap = plt.get_cmap('gnuplot')
    colors = [cmap(i) for i in np.linspace(0, 1, max_index+1)]
    #Print the final epoch
    nums_epoch= -1
    #Go over all the samples size and plot them with the right color
    for index_in_range in range(0, max_index):
        XT, TY = [], []
        for layer_index in range(0, I_XT_array.shape[4]):
                XT.append(np.mean(I_XT_array[:, -1, index_in_range, nums_epoch, layer_index], axis=0))
                TY.append(np.mean(I_TY_array[:, -1, index_in_range,nums_epoch, layer_index], axis=0))
        axes[index_i, index_j].plot(XT, TY, marker='o', linestyle='-', markersize=12, markeredgewidth=0.2, linewidth=0.5,
                         color=colors[index_in_range])
    plt_ut.adjustAxes( axes[index_i, index_j], axis_font = axis_font, title_str = title_str, x_ticks = x_ticks, y_ticks = y_ticks, x_lim = None, y_lim = None,
    set_xlabel = index_i == axes.shape[0] - 1, set_ylabel = index_j == 0, x_label = '$I(X;T)$', y_label =  '$I(T;Y)$', set_xlim = True,
                       set_ylim = True, set_ticks = True,label_size =font_size )
    #Create color bar and save it
    if index_i == axes.shape[0] - 1 and index_j == axes.shape[1] - 1:
        plt_ut.create_color_bar(f, cmap, colorbar_axis, bar_font, epochsInds,title='Training Data')
        f.savefig(save_name + '.jpg', dpi=150, format='jpg')
Exemplo n.º 6
0
def update_line_each_neuron(num, print_loss, Ix, axes, Iy, train_data, accuracy_test, epochs_bins, loss_train_data, loss_test_data, colors, epochsInds,
                            font_size = 18, axis_font = 16, x_lim = [0,12.2], y_lim=[0, 1.08],x_ticks = [], y_ticks = []):
    """Update the figure of the infomration plane for the movie"""
    #Print the line between the points
    axes[0].clear()
    if len(axes)>1:
        axes[1].clear()
    #Print the points
    for layer_num in range(Ix.shape[2]):
        for net_ind in range(Ix.shape[0]):
            axes[0].scatter(Ix[net_ind,num, layer_num], Iy[net_ind,num, layer_num], color = colors[layer_num], s = 35,edgecolors = 'black',alpha = 0.85)
    title_str = 'Information Plane - Epoch number - ' + str(epochsInds[num])
    plt_ut.adjustAxes(axes[0], axis_font, title_str, x_ticks, y_ticks, x_lim, y_lim, set_xlabel=True, set_ylabel=True,
               x_label='$I(X;T)$',y_label='$I(T;Y)$')
    #Print the loss function and the error
    if len(axes)>1:
        axes[1].plot(epochsInds[:num], 1 - np.mean(accuracy_test[:, :num], axis=0), color='g')
        if print_loss:
            axes[1].plot(epochsInds[:num], np.mean(loss_test_data[:, :num], axis=0), color='y')
        nereast_val = np.searchsorted(epochs_bins, epochsInds[num], side='right')
        axes[1].set_xlim([0,epochs_bins[nereast_val]])
        axes[1].legend(('Accuracy', 'Loss Function'), loc='best')
Exemplo n.º 7
0
def plot_alphas(str_name, save_name='dist'):
    data_array = get_data(str_name)
    params = np.squeeze(np.array(data_array['information']))
    I_XT_array = np.squeeze(np.array(extract_array(params, 'local_IXT')))
    """"
    for i in range(I_XT_array.shape[2]):
        f1, axes1 = plt.subplots(1, 1)

        axes1.plot(I_XT_array[:,:,i])
    plt.show()
    return
    """
    I_XT_array_var = np.squeeze(np.array(extract_array(params, 'IXT_vartional')))
    I_TY_array_var = np.squeeze(np.array(extract_array(params, 'ITY_vartional')))

    I_TY_array = np.squeeze(np.array(extract_array(params, 'local_ITY')))
    """
    f1, axes1 = plt.subplots(1, 1)
    #axes1.plot(I_XT_array,I_TY_array)
    f1, axes2 = plt.subplots(1, 1)

    axes1.plot(I_XT_array ,I_TY_array_var)
    axes2.plot(I_XT_array ,I_TY_array)
    f1, axes1 = plt.subplots(1, 1)
    axes1.plot(I_TY_array, I_TY_array_var)
    axes1.plot([0, 1.1], [0, 1.1], transform=axes1.transAxes)
    #axes1.set_title('Sigmma=' + str(sigmas[i]))
    axes1.set_ylim([0, 1.1])
    axes1.set_xlim([0, 1.1])
    plt.show()
    return
    """
    #for i in range()
    sigmas = np.linspace(0, 0.3, 20)

    for i in range(0,20):
        print (i, sigmas[i])
        f1, axes1 = plt.subplots(1, 1)
        print (I_XT_array)
        axes1.plot(I_XT_array, I_XT_array_var[:,:,i], linewidth=5)
        axes1.plot([0, 15.1], [0, 15.1], transform=axes1.transAxes)
        axes1.set_title('Sigmma=' +str(sigmas[i]))
        axes1.set_ylim([0,15.1])
        axes1.set_xlim([0,15.1])
    plt.show()
    return
    epochs_s = data_array['params']['epochsInds']
    f, axes = plt.subplots(1, 1)
    #epochs_s = []
    colors = LAYERS_COLORS
    linestyles  = [ '--', '-.', '-','', ' ',':', '']
    epochs_s =[0, -1]
    for j in epochs_s:
        print (j)
        for i  in range(0, I_XT_array.shape[1]):

            axes.plot(sigmas, I_XT_array_var[j,i,:],color = colors[i], linestyle = linestyles[j], label='Layer-'+str(i) +' Epoch - ' +str(epochs_s[j]))
    title_str = 'I(X;T) for different layers as function of $\sigma$ (The width of the gaussian)'
    x_label = '$\sigma$'
    y_label = '$I(X;T)$'
    x_lim = [0, 3]
    plt_ut.adjustAxes(axes, axis_font=20, title_str=title_str, x_ticks=[], y_ticks=[], x_lim=x_lim, y_lim=None,
               set_xlabel=True, set_ylabel=True, x_label=x_label, y_label=y_label, set_xlim=True, set_ylim=False, set_ticks=False,
               label_size=20, set_yscale=False,
               set_xscale=False, yscale=None, xscale=None, ytick_labels='', genreal_scaling=False)
    axes.legend()
    plt.show()
Exemplo n.º 8
0
def plot_gradients(name_s):
    """Plot the gradients and the means of the networks over the batchs"""
    data_array= get_data(name_s[0][0])
    gradients = data_array['var_grad_val']
    ws = data_array['ws']
    epochsInds = (data_array['params']['epochsInds']).astype(np.int)
    data = np.squeeze(np.array(data_array['information']))
    I_TY_array = np.array(extract_array(data, 'local_ITY'))
    fig_size = (14, 10)
    f_norms, (axes_norms) = plt.subplots(1, 1, figsize=fig_size)
    f_log, (axes_log) = plt.subplots(1, 1,figsize=fig_size)
    f_log.subplots_adjust(left=0.097, bottom=0.11, right=.95, top=0.95, wspace=0.03, hspace=0.03)
    colors = LAYERS_COLORS
    #TODO - change it to auto
    num_of_layer = 6
    #Go over the layers
    for layer_index in range(0,num_of_layer-1):
        traces_layers, means_layers, p_1, p_0, l2_norms = [], [], [], [], []
        print (layer_index)
        #We want to skip the biasses so we need to go every 2 indexs
        layer = layer_index*2
        #Go over the weights
        for k in range(len(gradients)):
            #print (k)
            grad = np.squeeze(gradients[k][0][0])
            #ws_in = np.squeeze(ws[k][0][0])
            ws_in = ws[k][0][0]
            cov_traces ,means,means,layer_l2_norm= [], [] ,[],[]
            #Go over all the epochs
            for epoch_number in range(len(ws_in)):
                print ('epoch number' ,epoch_number)
                #the weights of the layer as one-dim vector
                if type(ws_in[epoch_number][layer_index]) is list:
                    flatted_list = [item for sublist in ws_in[epoch_number][layer_index] for item in sublist]
                else:
                    flatted_list = ws_in[epoch_number][layer_index]
                layer_l2_norm.append(LA.norm(np.array(flatted_list), ord=2))
                gradients_list = []
                #For each neuron go over all the weights
                for i in range(len(grad[epoch_number])):
                    current_list_inner = []
                    for neuron in range(len(grad[epoch_number][0][layer])):
                        c_n = grad[epoch_number,i][layer][neuron]
                        current_list_inner.extend(c_n)
                    gradients_list.append(current_list_inner)
                #the gradients are  dimensions of [#batchs][#weights]
                gradients_list = np.array(gradients_list)
                #the average over the batchs
                average_vec = np.mean(gradients_list, axis=0)
                #Sqrt of AA^T
                norm_mean = np.sqrt(np.dot(average_vec.T, average_vec))
                covs_mat = np.zeros((average_vec.shape[0], average_vec.shape[0]))
                #Go over all the vectors of batchs, reduce thier mean and calculate the covariance matrix
                for batch in range(gradients_list.shape[0]):
                    current_vec = gradients_list[batch, :] - average_vec
                    current_cov_mat = np.dot(current_vec[:,None], current_vec[None,:])
                    covs_mat+=current_cov_mat
                #Take the mean cov matrix
                mean_cov_mat = np.array(covs_mat)/ gradients_list.shape[0]
                #The trace of the cov matrix
                trac_cov = np.trace(np.array(mean_cov_mat))
                means.append(norm_mean)
                cov_traces.append(np.sqrt(trac_cov))
                #Second method if we have a lot of neurons
                """
                #cov_traces.append(np.mean(grad_norms))
                #means.append(norm_mean)
                c_var,c_mean,total_w = [], [],[]

                for neuron in range(len(grad[epoch_number][0][layer])/10):
                    gradients_list = np.array([grad[epoch_number][i][layer][neuron] for i in range(len(grad[epoch_number]))])
                    total_w.extend(gradients_list.T)
                    grad_norms1 = np.std(gradients_list, axis=0)
                    mean_la = np.abs(np.mean(np.array(gradients_list), axis=0))
                    #mean_la = LA.norm(gradients_list, axis=0)
                    c_var.append(np.mean(grad_norms1))
                    c_mean.append(np.mean(mean_la))
                #total_w is in size [num_of_total_weights, num of epochs]
                total_w = np.array(total_w)
                #c_var.append(np.sqrt(np.trace(np.cov(np.array(total_w).T)))/np.cov(np.array(total_w).T).shape[0])
                #print (np.mean(c_mean).shape)
                means.append(np.mean(c_mean))
                cov_traces.append(np.mean(c_var))
                """
            l2_norms.append(layer_l2_norm)
            means_layers.append(np.array(means))
            traces_layers.append((np.array(cov_traces)))
        #Normalize by the l_2 norms
        y_var = np.mean(np.array(traces_layers), axis=0) / np.mean(l2_norms, axis=0)
        y_mean = np.mean(np.array(means_layers), axis=0)/ np.mean(l2_norms, axis=0)
        #Plot the gradients and the means
        c_p1, = axes_log.plot(epochsInds[:], y_var,markersize = 4, linewidth = 4,color = colors[layer_index], linestyle=':', markeredgewidth=0.2, dashes = [4,4])
        c_p0,= axes_log.plot(epochsInds[:], y_mean,  linewidth = 2,color = colors[layer_index])
        #plot the norms
        axes_norms.plot(epochsInds[:], np.mean(np.array(l2_norms), axis=0),linewidth = 2, color = colors[layer_index])
        #For the legend
        p_0.append(c_p0)
        p_1.append(c_p1)
    #adejust the figure according the specipic labels, scaling and legends
    #Change the log and log to linear if you want linear scaling
    #update_axes(reg_axes, '# Epochs', 'Normalized Mean and STD', [0, 10000], [0.000001, 10], '', 'log', 'log', [1, 10, 100, 1000, 10000], [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10], p_0, p_1)
    update_axes(axes_log, '# Epochs', 'Normalized Mean and STD', [0, 9000], [0.000001, 1000], '', 'log', 'log', [1, 10, 100, 1000, 20000], [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100], p_0, p_1)
    plt_ut.adjustAxes(axes_norms, axis_font=20, title_str='',
                      set_xlabel=True, set_ylabel=True, x_label='# Epochs', y_label='$L_2$')
    # the legends
    categories = [r'$\|W_1\|$', r'$\|W_2\|$', r'$\|W_3\|$', r'$\|W_4\|$', r'$\|W_5\|$', r'$\|W_6\|$']
    axes_norms.legend(categories, loc='best', fontsize=16)
    f_log.savefig('log_gradient.jpg', dpi=200, format= 'jpg')
    f_norms.savefig('norms.jpg', dpi=200, format= 'jpg')