# -------------------------------
 alpha_cell_size_curve = []
 beta_cell_size_curve = []
 volPM_typical = 2 * 30E-6**2 + 4 * 30E-6 * 8E-6
 volCP_typical = 8E-6 * 30E-6**2
 radii = list(np.logspace(np.log10(30E-7), np.log10(30E-5)))
 for radius in radii:
     volPM = 2 * radius**2 + 4 * radius * 8E-6
     volCP = 8E-6 * radius**2
     # Alpha
     response = Mixed_Model.timecourse(
         list(np.linspace(0, 60)),
         'TotalpSTAT',
         parameters={
             'Ia': 10E-12 * 6.022E23 * 1E-5,
             'Ib': 0,
             'R1': (volPM / volPM_typical) * 1200,
             'R2': (volPM / volPM_typical) * 4920,
             'S': (volCP / volCP_typical) * 1E4
         },
         return_type='list',
         scale_factor=scale_factor)['TotalpSTAT'][-1]
     normalized_response = response / ((volCP / volCP_typical) * 1E4)
     alpha_cell_size_curve.append(normalized_response)
     # Beta
     response = Mixed_Model.timecourse(
         list(np.linspace(0, 60)),
         'TotalpSTAT',
         parameters={
             'Ib': 10 * 1E-12 * 6.022E23 * 1E-5,
             'Ia': 0,
             'R1': (volPM / volPM_typical) * 1200,
Exemplo n.º 2
0
    dr_plot_mean_fit.show_figure(save_flag=False)

    # -------------------------------
    # Plot time course paper figure
    # -------------------------------
    alpha_palette = sns.color_palette("Reds", 8)
    beta_palette = sns.color_palette("Greens", 8)

    # Simulate time courses
    alpha_time_courses = []
    for d in doses_alpha:
        alpha_time_courses.append(
            Mixed_Model.timecourse(list(np.linspace(0, 60, 30)),
                                   'TotalpSTAT', {
                                       'Ia': d * 6.022E23 * 1E-5 * 1E-12,
                                       'Ib': 0
                                   },
                                   return_type='dataframe',
                                   dataframe_labels=['Alpha', d]))
    beta_time_courses = []
    for d in doses_beta:
        beta_time_courses.append(
            Mixed_Model.timecourse(list(np.linspace(0, 60, 30)),
                                   'TotalpSTAT', {
                                       'Ib': d * 6.022E23 * 1E-5 * 1E-12,
                                       'Ia': 0
                                   },
                                   return_type='dataframe',
                                   dataframe_labels=['Beta', d]))
    # Scale simulations
    for i in range(30):
Exemplo n.º 3
0
        if t not in beta_mask:
            new_fit.add_trajectory(Sagar_data, t, 'errorbar', beta_palette[idx], (0, 1), 'Beta', dn=1)
            new_fit.add_trajectory(Sagar_data, t, 'scatter', 'go', (0, 1), 'Beta', dn=1, color=beta_palette[idx], label='Beta ' + str(t))


    new_fit.show_figure(save_flag=False)
    print(Mixed_Model.parameters)

    # ----------------------------------
    # Time course plot
    # ----------------------------------
   # Simulate time courses
    alpha_time_courses = []
    for d in [10, 90, 600, 4000, 8000]:
        alpha_time_courses.append(Mixed_Model.timecourse(list(linspace(0, 60, 25)), 'TotalpSTAT',
                                                         {'Ia': d * 6.022E23 * 1E-5 * 1E-12, 'Ib': 0},
                                                         return_type='dataframe', dataframe_labels=['Alpha', d]))
    beta_time_courses = []
    for d in [10, 90, 600, 2000, 11000]:
        beta_time_courses.append(Mixed_Model.timecourse(list(linspace(0, 60, 25)), 'TotalpSTAT',
                                                        {'Ib': d * 6.022E23 * 1E-5 * 1E-12, 'Ia': 0},
                                                        return_type='dataframe', dataframe_labels=['Beta', d]))
    # Scale simulations
    for i in range(25):
        for j in range(5):
            alpha_time_courses[j].loc['Alpha'].iloc[:, i] = alpha_time_courses[j].loc['Alpha'].iloc[:, i].apply(scale_data)
            beta_time_courses[j].loc['Beta'].iloc[:, i] = beta_time_courses[j].loc['Beta'].iloc[:, i].apply(scale_data)
    # Turn into IfnData objects
    alpha_IfnData_objects = []
    beta_IfnData_objects = []
    for j in range(5):