Exemplo n.º 1
0
def main():
    _copy_and_replace_files()
    model = ignnition.create_model(model_dir=Path(__file__).parent / __test__)
    model.computational_graph()
    model.train_and_validate()
    model.predict()
    _clean_files()
Exemplo n.º 2
0
def main():
    model = ignnition.create_model(model_dir='./')
    model.computational_graph()
    
    val_dataset = model.CONFIG["predict_dataset"]
    n_links = val_dataset.split('_')[1]

    all_predictions = np.array(model.evaluate())
    np.save("./data/nlinks_"+str(n_links), all_predictions)
Exemplo n.º 3
0
def main():
    model = ignnition.create_model(model_dir='./')
    model.computational_graph()
    all_metrics = model.evaluate()

    convert_to_np = []
    for elem in all_metrics:
        convert_to_np.append(elem.numpy())

    with open('Results.pkl', 'wb') as f:
        pickle.dump(convert_to_np, f)
Exemplo n.º 4
0
def main():
    model = ignnition.create_model('./train_options.ini')
    model.computational_graph()
    model.train_and_evaluate()
Exemplo n.º 5
0
def main():
    model = ignnition.create_model('./train_options.ini')
    model.train_and_evaluate()
Exemplo n.º 6
0
def main():
    model = ignnition.create_model(model_dir='./')
    model.computational_graph()
    model.train_and_validate()
Exemplo n.º 7
0
def main():
    model = ignnition.create_model(
        model_dir='exception/load_model_path_required')
    model.computational_graph()
    model.predict()